Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 276: 116321, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608382

RESUMEN

Manure is one of the main sources of heavy metal (HM) pollution on farmlands. It has become the focus of global ecological research because of its potential threat to human health and the sustainability of food systems. Soil pH and organic matter are improved by manure and play pivotal roles in determining soil HM behavior. Geochemical modeling has been widely used to assess and predict the behavior of soil HMs; however, there remains a research gap in manure applications. In this study, a geochemical model (LeachXS) coupled with a pH-dependent leaching test with continuously simulations over a broad pH range was used to determine the effects and pollution risks of pig or cattle manure separate application on soil HMs distribution. Both pig and cattle manure applications led to soil pH reduction in alkaline soils and increased organic matter content. Pig manure application resulted in a potential 90.5-156.0 % increase in soil HM content. Cattle manure did not cause significant HM contamination. The leaching trend of soil HMs across treatments exhibited a V-shaped change, with the lowest concentration at pH = 7, gradually increasing toward strong acids and bases. The dissolved organic matter-bound HM content directly increased the HM availability, especially for Cu (up to 8.4 %) after pig manure application. However, more HMs (Cr, Cu, Zn, Ni) were in the particulate organic matter-bound state than in other solid phases (e.g., Fe-Al(hydr) oxides, clay minerals), which inhibited the HMs leaching by more than 19.3 % after cattle manure application. Despite these variations, high HM concentrations introduced by pig manure raised the soil contamination risk, potentially exceeding 40 times at pH ±1. When manure is returned to the field, reducing its HM content and mitigating possible pollution is necessary to realize the healthy and sustainable development of circular agriculture.


Asunto(s)
Estiércol , Metales Pesados , Contaminantes del Suelo , Suelo , Estiércol/análisis , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Animales , Bovinos , Suelo/química , Porcinos , Concentración de Iones de Hidrógeno , Monitoreo del Ambiente
2.
Sci Total Environ ; 921: 170852, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38342462

RESUMEN

Under the twin pressures of global food security and dual­carbon strategies, improving farm eco-efficiency is critical for achieving China's goal of a 50 Pg increase in grain production, meeting the ambitious climate mitigation targets set by the Paris Agreement, and meeting seven of the seventeen Sustainable Development Goals (SDGs) set by the United Nations. However, there is limited research on eco-efficiency measures supported by localised fine-scale data and coupling mechanisms for the structure, production process, efficiency improvement, and carbon reduction synergies of integrated farming systems in China. This study used the Life Cycle Assessment (LCA) and Data Envelopment Analysis (DEA) methods to assess eco-efficiency at the farm level in northern China, included in the National Coupling Crop and Livestock Production Pilot Programs, to improve the eco-efficiency of farms to achieve increased production and emission reductions. The results showed that the overall eco-efficiency of farms was in the lower-middle range, with only 20.18 % of the farms having a technical efficiency exceeding 1. Problems included a backward level of pure technical efficiency and a return to scale. Non-integrated farms have the lowest profitability (41.33 %) and the highest carbon emission intensity of 3.03 kg CO2eq/USD. The global warming potential impact of non-integrated farms optimization could be reduced by 25 Pg CO2eq. Implementing the integrated farming mode has a significant advantage in reducing carbon emissions and improving productivity. Overall, farm fodder optimization can be increased by up to 42.41 %. Simultaneously, farms with sufficient farmland are more likely to realise a highly integrated business mode for crop cultivation and livestock breeding. Therefore, constructing a new type of green integrated farming system will help farms achieve increased production and emission reductions, promote the development of sustainable agriculture, and provide a Chinese model for the realisation of global SDGs.


Asunto(s)
Agricultura , Ganado , Animales , Agricultura/métodos , Granjas , China , Carbono , Estadios del Ciclo de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA