Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chin J Integr Med ; 30(4): 339-347, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37943489

RESUMEN

OBJECTIVE: To explore the anti-tumor effect of safflower yellow (SY) against hepatocellular carcinoma (HCC) and the underlying potential mechanism. METHODS: An in vitro model was established by mixing Luc-Hepa1-6 cells and CD3+CD8+ T cells, followed by adding programmed cell death protein 1 (PD-1) antibody (Anti-mPD-1) with or without SY. The apoptosis was detected by flow cytometry and the level of inflammatory cytokines was determined by enzyme-linked immunosorbent assay. The protein levels of programmed cell death 1 ligand 1 (PD-L1), chemokine ligand (CCL5), C-X-C motif chemokine ligand 10 (CXCL10) were measured by Western blot. An in situ animal model was established in mice followed by treatment with anti-mPD-1 with or without SY. Bioluminescence imaging was monitored with an AniView 100 imaging system. To establish the FAK-overexpressed Luc-Hepa1-6 cells, cells were transfected with adenovirus containing pcDNA3.1-FAK for 48 h. RESULTS: The fluorescence intensity, apoptotic rate, release of inflammatory cytokines, and CCL5/CXCL10 secretion were dramatically facilitated by anti-mPD-1 (P<0.01), accompanied by an inactivation of PD-1/PD-L1 axis, which were extremely further enhanced by SY (P<0.05 or P<0.01). Increased fluorescence intensity, elevated percentage of CD3+CD8+ T cells, facilitated release of inflammatory cytokines, inactivated PD-1/PD-L1 axis, and increased CCL5/CXCL10 secretion were observed in Anti-mPD-1 treated mice (P<0.01), which were markedly enhanced by SY (P<0.05 or P<0.01). Furthermore, the enhanced effects of SY on inhibiting tumor cell growth, facilitating apoptosis and inflammatory cytokine releasing, suppressing the PD-1/PD-L1 axis, and inducing the CCL5/CXCL10 secretion in Anti-mPD-1 treated mixture of Luc-Hepa1-6 cells and CD3+CD8+ T cells were abolished by FAK overexpression (P<0.01). CONCLUSION: SY inhibited the progression of HCC by mediating immunological tolerance through inhibiting FAK.


Asunto(s)
Carcinoma Hepatocelular , Chalcona/análogos & derivados , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Linfocitos T CD8-positivos , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Ligandos , Ratones Endogámicos , Citocinas/metabolismo
2.
Int J Gen Med ; 14: 3485-3496, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34290523

RESUMEN

BACKGROUND: Topoisomerase 2-alpha (TOP2A) has been identified as a hub gene that played an important role in the initiation and progression of thyroid carcinoma (THCA). However, the exact function of TOP2A in papillary thyroid cancer (PTC) remained elusive. The current study aimed to evaluate the TOP2A expression, prognosis significance and key signaling pathways involved in PTC. METHODS: We firstly evaluated the expression of TOP2A in PTC via UALCAN, cBioportal, HPA and LinkdedOmics databases. Genetic alteration of TOP2A in PTC was then explored in cBioportal. Prognostic impacts of TOP2A expression on disease-free survival (DFS) of PTC patients were subsequently evaluated using Kaplan-Meier plotter and Gepia databases. Taking gender, age, cancer stage, T, N and M stages into consideration, we compared survival difference between TOP2A high and low expression groups. KEGG pathway analysis in WebGestalt and GSEA analysis were further performed to reveal the potential TOP2A-associated signaling pathways involved in PTC. Finally, the upstream microRNAs of TOP2A were assessed using DIANA, TargetScan, miRDB and miRWALK database, followed by mechanism exploration of upstream microRNAs. RESULTS: 1) The mRNA and protein of TOP2A were highly expressed in PTC tissue compared with normal thyroid tissue. TOP2A expression was associated with patient's age, N stage and cancer stage (all P<0.05). TOP2A protein was mainly localized to nucleoplasm. 2) Most of samples occurred the missense substitution, and mutation site was located at K1199E. Nucleotide mutations were mainly presented as G>A (35.29%). 3) TOP2A high expression significantly influenced the DFS of PTC patients (P=0.015). Restricted survival analysis showed that TOP2A high expression caused poorer DFS of female patients (P=0.003) and those with age <60 years old (P=0.002), early clinical stage (P=0.012), N0 stage (P=0.002) or M0 stage (P=0.040). 4) Pathway analysis suggested that TOP2A positively participated in the cell cycle, oocyte meiosis and p53 signaling pathways (all P<0.05) involved in thyroid cancer. CONCLUSION: The expression of TOP2A was higher in PTC tissue, which resulted in a worse DFS of patients with PTC. TOP2A might act as an effective therapeutic target for PTC treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA