Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 31(2): 2480-2491, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785261

RESUMEN

Organic light-emitting field-effect transistors (OLEFETs) are regarded as an ideal device platform to achieve electrically pumped organic semiconductor lasers (OSLs). However, the incorporation of a high-quality resonator into OLEFETs is still challenging since the process usually induces irreparable deterioration to the electric-related emission performance of the device. We here propose a dual distributed Bragg reflector (DBR)-based planar microcavity, which is verified to be highly compatible with the OLEFETs. The dual DBR planar microcavity shows the great advantage of simultaneously promoting the quality (Q) factor and outcoupling efficiency of the device due to the reduced optical loss. As a result, a moderately high Q factor of ∼160, corresponding to EL spectrum linewidth as narrow as 3.2 nm, concomitantly with high outcoupling efficiency (∼7.1%) has been successfully obtained. Our results manifest that the dual DBR-based planar microcavity is a promising type of resonator, which might find potential applications in improving the spectra and efficiency performance of OLEFETs as well as in OLEFET-based electrically pumped OSLs.

2.
Opt Express ; 29(20): 31549-31560, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34615246

RESUMEN

Fresnel incoherent correlation holography (FINCH) shows great advantages of coherent-light-source-free, high lateral resolution, no scanning, and easy integration, and has exhibited great potential in recording three-dimensional information of objects. Despite the rapid advances in the resolution of the FINCH system, little attention has been paid to the influence of the effective aperture of the system. Here, the effective aperture of the point spread function (PSF) has been investigated both theoretically and experimentally. It is found that the effective aperture is mainly restricted by the aperture of the charge-coupled device (CCD), the pixel size of the CCD, and the actual aperture of the PSF at different recording distances. It is also found that the optimal spatial resolution exists only for a small range of recording distance, while this range would become smaller as the imaging wavelength gets longer, leading to the result that the optimal spatial resolution is solely determined by the actual aperture of the PSF. By further combining the FINCH system with a microscopy system and optimizing the recording distance, a spatial resolution as high as 0.78 µm at the wavelength of 633 nm has been obtained, enabling a much higher quality imaging of unstained living biological cells compared to the commercial optical microscope. The results of this work may provide some helpful insights into the design of high-resolution FINCH systems and pave the way for their application in biomedical imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA