Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 36(4): 397-408, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28096180

RESUMEN

Coordinating cell growth with nutrient availability is critical for cell survival. The evolutionarily conserved TOR (target of rapamycin) controls cell growth in response to nutrients, in particular amino acids. As a central controller of cell growth, mTOR (mammalian TOR) is implicated in several disorders, including cancer, obesity, and diabetes. Here, we review how nutrient availability is sensed and transduced to TOR in budding yeast and mammals. A better understanding of how nutrient availability is transduced to TOR may allow novel strategies in the treatment for mTOR-related diseases.


Asunto(s)
Alimentos , Mamíferos/fisiología , Saccharomyces cerevisiae/fisiología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proliferación Celular , Metabolismo Energético
2.
Mol Biol Evol ; 36(4): 691-708, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30657986

RESUMEN

Pre-existing and de novo genetic variants can both drive adaptation to environmental changes, but their relative contributions and interplay remain poorly understood. Here we investigated the evolutionary dynamics in drug-treated yeast populations with different levels of pre-existing variation by experimental evolution coupled with time-resolved sequencing and phenotyping. We found a doubling of pre-existing variation alone boosts the adaptation by 64.1% and 51.5% in hydroxyurea and rapamycin, respectively. The causative pre-existing and de novo variants were selected on shared targets: RNR4 in hydroxyurea and TOR1, TOR2 in rapamycin. Interestingly, the pre-existing and de novo TOR variants map to different functional domains and act via distinct mechanisms. The pre-existing TOR variants from two domesticated strains exhibited opposite rapamycin resistance effects, reflecting lineage-specific functional divergence. This study provides a dynamic view on how pre-existing and de novo variants interactively drive adaptation and deepens our understanding of clonally evolving populations.


Asunto(s)
Evolución Biológica , Farmacorresistencia Fúngica/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Hidroxiurea , Mutación , Fosfatidilinositol 3-Quinasas/genética , Sitios de Carácter Cuantitativo , Proteínas de Saccharomyces cerevisiae/genética , Selección Genética , Sirolimus
3.
Yeast ; 36(1): 65-74, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30094872

RESUMEN

Saccharomyces cerevisiae is the main species responsible for the alcoholic fermentation in wine production. One of the main problems in this process is the deficiency of nitrogen sources in the grape must, which can lead to stuck or sluggish fermentations. Currently, yeast nitrogen consumption and metabolism are under active inquiry, with emphasis on the study of the TORC1 signalling pathway, given its central role responding to nitrogen availability and influencing growth and cell metabolism. However, the mechanism by which different nitrogen sources activates TORC1 is not completely understood. Existing methods to evaluate TORC1 activation by nitrogen sources are time-consuming, making difficult the analyses of large numbers of strains. In this work, a new indirect method for monitoring TORC1 pathway was developed on the basis of the luciferase reporter gene controlled by the promoter region of RPL26A gene, a gene known to be expressed upon TORC1 activation. The method was tested in strains representative of the clean lineages described so far in S. cerevisiae. The activation of the TORC1 pathway by a proline-to-glutamine upshift was indirectly evaluated using our system and the traditional direct methods based on immunoblot (Sch9 and Rps6 phosphorylation). Regardless of the different molecular readouts obtained with both methodologies, the general results showed a wide phenotypic variation between the representative strains analysed. Altogether, this easy-to-use assay opens the possibility to study the molecular basis for the differential TORC1 pathway activation, allowing to interrogate a larger number of strains in the context of nitrogen metabolism phenotypic differences.


Asunto(s)
Variación Genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Saccharomyces cerevisiae/genética , Transducción de Señal , Fermentación , Regulación Fúngica de la Expresión Génica , Genes Reporteros , Luciferasas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Fosforilación , Regiones Promotoras Genéticas , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
Biochim Biophys Acta Mol Cell Res ; 1864(2): 314-323, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27864078

RESUMEN

In response to different adverse conditions, most eukaryotic organisms, including Saccharomyces cerevisiae, downregulate protein synthesis through the phosphorylation of eIF2α (eukaryotic initiation factor 2α) by Gcn2, a highly conserved protein kinase. Gcn2 also controls the translation of Gcn4, a transcription factor involved in the induction of amino acid biosynthesis enzymes. Here, we have studied the functional role of Gcn2 and Gcn2-regulating proteins, in controlling translation during temperature downshifts of TRP1 and trp1 yeast cells. Our results suggest that neither cold-instigated amino acid limitation nor Gcn2 are involved in the translation suppression at low temperature. However, loss of TRP1 causes increased eIF2α phosphorylation, Gcn2-dependent polysome disassembly and overactivity of Gcn4, which result in cold-sensitivity. Indeed, knock-out of GCN2 improves cold growth of trp1 cells. Likewise, mutation of several Gcn2-regulators and effectors results in cold-growth effects. Remarkably, we found that Hog1, the osmoresponsive MAPK, plays a role in the regulatory mechanism of Gcn2-eIF2α. Finally, we demonstrated that P-body formation responds to a downshift in temperature in a TRP1-dependent manner and is required for cold tolerance.


Asunto(s)
Adaptación Fisiológica , Frío , Biosíntesis de Proteínas , Saccharomyces cerevisiae/fisiología , Triptófano/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Metabolismo Energético , Factores Eucarióticos de Iniciación/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Triptófano/metabolismo
5.
Mol Microbiol ; 101(4): 671-87, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27169355

RESUMEN

Lack of the yeast Ptc1 Ser/Thr protein phosphatase results in numerous phenotypic defects. A parallel search for high-copy number suppressors of three of these phenotypes (sensitivity to Calcofluor White, rapamycin and alkaline pH), allowed the isolation of 25 suppressor genes, which could be assigned to three main functional categories: maintenance of cell wall integrity (CWI), vacuolar function and protein sorting, and cell cycle regulation. The characterization of these genetic interactions strengthens the relevant role of Ptc1 in downregulating the Slt2-mediated CWI pathway. We show that under stress conditions activating the CWI pathway the ptc1 mutant displays hyperphosphorylated Cdc28 kinase and that these cells accumulate with duplicated DNA content, indicative of a G2-M arrest. Clb2-associated Cdc28 activity was also reduced in ptc1 cells. These alterations are attenuated by mutation of the MKK1 gene, encoding a MAP kinase kinase upstream Slt2. Therefore, our data show that Ptc1 is required for proper G2-M cell cycle transition after activation of the CWI pathway.


Asunto(s)
Proteína Fosfatasa 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , División Celular/fisiología , Pared Celular/genética , Pared Celular/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteína Fosfatasa 2/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Mol Microbiol ; 95(3): 555-72, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25425491

RESUMEN

Maintenance of ion homeostatic mechanisms is essential for living cells, including the budding yeast Saccharomyces cerevisiae. Whereas the impact of changes in phosphate metabolism on metal ion homeostasis has been recently examined, the inverse effect is still largely unexplored. We show here that depletion of potassium from the medium or alteration of diverse regulatory pathways controlling potassium uptake, such as the Trk potassium transporters or the Pma1 H(+) -ATPase, triggers a response that mimics that of phosphate (Pi) deprivation, exemplified by accumulation of the high-affinity Pi transporter Pho84. This response is mediated by and requires the integrity of the PHO signaling pathway. Removal of potassium from the medium does not alter the amount of total or free intracellular Pi, but is accompanied by decreased ATP and ADP levels and rapid depletion of cellular polyphosphates. Therefore, our data do not support the notion of Pi being the major signaling molecule triggering phosphate-starvation responses. We also observe that cells with compromised potassium uptake cannot grow under limiting Pi conditions. The link between potassium and phosphate homeostasis reported here could explain the invasive phenotype, characteristic of nutrient deprivation, observed in potassium-deficient yeast cells.


Asunto(s)
Homeostasis , Fosfatos/metabolismo , Potasio/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Catión/metabolismo , Citoplasma/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Polifosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
7.
Mol Syst Biol ; 11(4): 802, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25888284

RESUMEN

Cells react to nutritional cues in changing environments via the integrated action of signaling, transcriptional, and metabolic networks. Mechanistic insight into signaling processes is often complicated because ubiquitous feedback loops obscure causal relationships. Consequently, the endogenous inputs of many nutrient signaling pathways remain unknown. Recent advances for system-wide experimental data generation have facilitated the quantification of signaling systems, but the integration of multi-level dynamic data remains challenging. Here, we co-designed dynamic experiments and a probabilistic, model-based method to infer causal relationships between metabolism, signaling, and gene regulation. We analyzed the dynamic regulation of nitrogen metabolism by the target of rapamycin complex 1 (TORC1) pathway in budding yeast. Dynamic transcriptomic, proteomic, and metabolomic measurements along shifts in nitrogen quality yielded a consistent dataset that demonstrated extensive re-wiring of cellular networks during adaptation. Our inference method identified putative downstream targets of TORC1 and putative metabolic inputs of TORC1, including the hypothesized glutamine signal. The work provides a basis for further mechanistic studies of nitrogen metabolism and a general computational framework to study cellular processes.


Asunto(s)
Regulación Fúngica de la Expresión Génica , ARN de Hongos/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Causalidad , Ciclo Celular , Simulación por Computador , Medios de Cultivo/farmacología , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Metaboloma , Modelos Biológicos , Nitrógeno/metabolismo , Probabilidad , Proteoma , ARN de Hongos/genética , Saccharomyces cerevisiae/efectos de los fármacos , Transducción de Señal
8.
Mol Microbiol ; 90(2): 367-82, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23962284

RESUMEN

Saccharomyces cerevisiae Hal3 and Vhs3 are moonlighting proteins, forming an atypical heterotrimeric decarboxylase (PPCDC) required for CoA biosynthesis, and regulating cation homeostasis by inhibition of the Ppz1 phosphatase. The Schizosaccharomyces pombe ORF SPAC15E1.04 (renamed as Sp hal3) encodes a protein whose amino-terminal half is similar to Sc Hal3 whereas its carboxyl-terminal half is related to thymidylate synthase (TS). We show that Sp Hal3 and/or its N-terminal domain retain the ability to bind to and modestly inhibit in vitro S. cerevisiae Ppz1 as well as its S. pombe homolog Pzh1, and also exhibit PPCDC activity in vitro and provide PPCDC function in vivo, indicating that Sp Hal3 is a monogenic PPCDC in fission yeast. Whereas the Sp Hal3 N-terminal domain partially mimics Sc Hal3 functions, the entire protein and its carboxyl-terminal domain rescue the S. cerevisiae cdc21 mutant, thus proving TS function. Additionally, we show that the 70 kDa Sp Hal3 protein is not proteolytically processed under diverse forms of stress and that, as predicted, Sp hal3 is an essential gene. Therefore, Sp hal3 represents a fusion event that joined three different functional activities in the same gene. The possible advantage derived from this surprising combination of essential proteins is discussed.


Asunto(s)
Carboxiliasas/metabolismo , Fusión Génica , Genes Fúngicos , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Timidilato Sintasa/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Genes Esenciales , Sistemas de Lectura Abierta , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Recombinantes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Homología de Secuencia de Aminoácido , Timidilato Sintasa/genética
9.
Fungal Genet Biol ; 53: 1-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23454581

RESUMEN

Yeast flocculation and invasive growth are processes of great interest in fundamental biology and also relevant in biotechnology and medicine. Hal3 and Vhs3 are moonlighting proteins acting in Saccharomyces cerevisiae both as inhibitors of the Ppz protein phosphatases and as components of a catalytic step in CoA biosynthesis. The double hal3 vhs3 mutant is not viable but, under semi-permissive conditions, the tetO:HAL3 vhs3 strain shows a flocculent phenotype, invasive growth and increased expression of the flocculin-encoding FLO11 gene. We show here that all these effects are caused by hyperactivation of Ppz1 as a result of depletion of its natural inhibitors. The evidence indicates that hyperactivation of Ppz1 would impair potassium transport through the Trk1/Trk2 transporters, thus resulting in a decrease in the intracellular pH and a subsequent increase in the levels of cAMP. Mutation of the TPK2 isoform of protein kinase A blocks the increase in FLO11 expression, and eliminates the flocculent and invasive phenotypes produced by depletion of Hal3 and Vhs3. Interestingly, mutation of RIM101 also significantly decreases FLO11 expression under these conditions. Cells lacking Trk1,2 display an invasive phenotype that is abolished by deletion of FLO8 or by increasing the potassium concentration in the medium. Therefore, our results support a model in which hyperactivation of Ppz phosphatases would result in alteration of potassium transport, activation of Tpk2 and signaling to the FLO11 promoter by means of the Flo8 transcription factor, thus modulating flocculation and invasive growth. This model highlights an unsuspected link between potassium homeostasis and these important morphogenetic events.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Homeostasis , Mutación , Potasio/metabolismo , Levaduras/genética , Levaduras/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática/genética , Regulación Fúngica de la Expresión Génica , Fenotipo , Fosfoproteínas Fosfatasas/metabolismo , Transducción de Señal , Levaduras/patogenicidad
10.
Biochem J ; 442(2): 357-68, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22124281

RESUMEN

The Saccharomyces cerevisiae Hal3 protein is a moonlighting protein, able to function both as an inhibitory subunit of the Ppz1 protein phosphatase and as a constituent protomer of an unprecedented heterotrimeric PPCDC (phosphopantothenoylcysteine decarboxylase), the third enzyme of the CoA biosynthetic pathway. In the present study we initiated the dissection of the structural elements required for both disparate cellular tasks by using a combination of biochemical and genetic approaches. We show that the conserved Hal3 core [PD (PPCDC domain)] is necessary for both functions, as determined by in vitro and in vivo assays. The Hal3 NtD (N-terminal domain) is not functional by itself, although in vitro experiments indicate that when this domain is combined with the core it has a relevant function in Hal3's heteromeric PPCDC activity. Both the NtD and the acidic CtD (C-terminal domain) also appear to be important for Hal3's Ppz1 regulatory function, although our results indicate that the CtD fulfils the key role in this regard. Finally, we show that the introduction of two key asparagine and cysteine residues, essential for monofunctional PPCDC activity but absent in Hal3, is not sufficient to convert it into such a homomeric PPCDC, and that additional modifications of Hal3's PD aimed at increasing its resemblance to known PPCDCs also fails to introduce this activity. This suggests that Hal3 has undergone significant evolutionary drift from ancestral PPCDC proteins. Taken together, our work highlights specific structural determinants that could be exploited for full understanding of Hal3's cellular functions.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Carboxiliasas/química , Carboxiliasas/genética , Carboxiliasas/metabolismo , Proteínas de Ciclo Celular/genética , Evolución Molecular , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Nat Genet ; 55(3): 389-398, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36823319

RESUMEN

Interacting proteins tend to have similar functions, influencing the same organismal traits. Interaction networks can be used to expand the list of candidate trait-associated genes from genome-wide association studies. Here, we performed network-based expansion of trait-associated genes for 1,002 human traits showing that this recovers known disease genes or drug targets. The similarity of network expansion scores identifies groups of traits likely to share an underlying genetic and biological process. We identified 73 pleiotropic gene modules linked to multiple traits, enriched in genes involved in processes such as protein ubiquitination and RNA processing. In contrast to gene deletion studies, pleiotropy as defined here captures specifically multicellular-related processes. We show examples of modules linked to human diseases enriched in genes with known pathogenic variants that can be used to map targets of approved drugs for repurposing. Finally, we illustrate the use of network expansion scores to study genes at inflammatory bowel disease genome-wide association study loci, and implicate inflammatory bowel disease-relevant genes with strong functional and genetic support.


Asunto(s)
Biología Celular , Células , Enfermedad , Estudios de Asociación Genética , Pleiotropía Genética , Estudios de Asociación Genética/métodos , Humanos , Ubiquitinación/genética , Procesamiento Postranscripcional del ARN/genética , Células/metabolismo , Células/patología , Reposicionamiento de Medicamentos/métodos , Reposicionamiento de Medicamentos/tendencias , Enfermedad/genética , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Estudio de Asociación del Genoma Completo , Fenotipo , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología
12.
Res Q Exerc Sport ; 94(2): 529-537, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35438618

RESUMEN

Purpose: The aim of this study was to analyze the evolution of the four most important leagues and to identify if there are differences between the English Premier League and the rest of the European leagues. Methods: Each team was characterized according to a set of 52 variables including offensive, defensive, and buildup 10 variables that were computed from OPTA's on-ball event records of the matches for main national leagues between the 2014 and 2018 seasons. To test the evolution of leagues, the t-SNE dimensionality reduction technique was used. To better understand the differences between leagues and teams, the most discriminating variables were obtained as a set of rules discovered by RIPPER, a machine learning algorithm. Results: The evolution of playing styles has meant that teams in the major European leagues seem to 15 be approaching homogeneity of technical-tactical behavior. Despite this, a distinction can be seen between the English teams concerning the rest of the teams in the other leagues, determined by fewer free kicks, fewer long passes but more vertical, more errors in ball control but greater success in dribbling. Conclusions: These results provide important knowledge and practical applications because of the study of the different variables and performance indicators among the best football championships.


Asunto(s)
Rendimiento Atlético , Fútbol Americano , Humanos , Inteligencia Artificial , Estudios Longitudinales , Logro
13.
Microbiology (Reading) ; 158(Pt 5): 1258-1267, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22343349

RESUMEN

The opportunistic pathogen Candida albicans has a single protein phosphatase Z (PPZ) candidate gene termed CaPPZ1, which shows significant allele variability. We demonstrate here that bacterially expressed CaPpz1 protein exhibits phosphatase activity which can be inhibited by recombinant Hal3, a known inhibitor of Saccharomyces cerevisiae Ppz1. Site-directed mutagenesis experiments based on natural polymorphisms allowed the identification of three amino acid residues that affect enzyme activity or stability. The expression of CaPPZ1 in ppz1 S. cerevisiae and pzh1 Schizosaccharomyces pombe cells partially rescued the salt and caffeine phenotypes of the deletion mutants. CaPpz1 also complemented the slt2 S. cerevisiae mutant, which is crippled in the mitogen-activated protein (MAP) kinase that mediates the cell wall integrity signalling pathway. Collectively, our results suggest that the orthologous PPZ enzymes have similar but not identical functions in different fungi. The deletion of the CaPPZ1 gene in C. albicans resulted in a mutant that was sensitive to salts such as LiCl and KCl, to caffeine, and to agents that affect cell wall biogenesis such as Calcofluor White and Congo red, but was tolerant to spermine and hygromycin B. Reintegration of the CaPPZ1 gene into the deletion mutant alleviated all of the mutant phenotypes tested. Thus CaPpz1 is involved in cation homeostasis, cell wall integrity and the regulation of the membrane potential of C. albicans. In addition, the germ tube growth rate, and virulence in the BALB/c mouse model, were reduced in the null mutant, suggesting a novel function for CaPpz1 in the yeast to hypha transition that may have medical relevance.


Asunto(s)
Candida albicans/enzimología , Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Clonación Molecular , Femenino , Proteínas Fúngicas/genética , Prueba de Complementación Genética , Ratones , Ratones Endogámicos BALB C , Mutagénesis Sitio-Dirigida , Fosfoproteínas Fosfatasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Virulencia
14.
Fungal Genet Biol ; 49(9): 708-16, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22750657

RESUMEN

The genome of the filamentous fungus Aspergillus nidulans harbors the gene ppzA that codes for the catalytic subunit of protein phosphatase Z (PPZ), and the closely related opportunistic pathogen Aspergillus fumigatus encompasses a highly similar PPZ gene (phzA). When PpzA and PhzA were expressed in Saccharomyces cerevisiae or Schizosaccharomyces pombe they partially complemented the deleted phosphatases in the ppz1 or the pzh1 mutants, and they also mimicked the effect of Ppz1 overexpression in slt2 MAP kinase deficient S. cerevisiae cells. Although ppzA acted as the functional equivalent of the known PPZ enzymes its disruption in A. nidulans did not result in the expected phenotypes since it failed to affect salt tolerance or cell wall integrity. However, the inactivation of ppzA resulted in increased sensitivity to oxidizing agents like tert-butylhydroperoxide, menadione, and diamide. To demonstrate the general validity of our observations we showed that the deletion of the orthologous PPZ genes in other model organisms, such as S. cerevisiae (PPZ1) or Candida albicans (CaPPZ1) also caused oxidative stress sensitivity. Thus, our work reveals a novel function of the PPZ enzyme in A. nidulans that is conserved in very distantly related fungi.


Asunto(s)
Aspergillus nidulans/enzimología , Proteínas Fúngicas/metabolismo , Estrés Oxidativo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Aspergillus nidulans/genética , Dominio Catalítico , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expresión Génica , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Alineación de Secuencia
15.
FEMS Yeast Res ; 12(7): 774-84, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22741610

RESUMEN

The durum wheat TMKP1 gene encodes a MAP kinase phosphatase. When overexpressed in Saccharomyces cerevisiae, TMKP1 leads to salt stress tolerance (especially LiCl ), which is dependent on the phosphatase activity of the protein. The TMKP1-associated Li(+) resistance is restricted to a galactose-containing medium. Interestingly, this salt tolerance is abolished in the absence of one member of the yeast type 2C Ser/Thr protein phosphatase family (Ptc1) but not when other members such as Ptc2 or Ptc3 are lacking. Increased Li(+) tolerance is not mediated by regulation of the P-type ATPase Ena1, a major determinant for salt tolerance. In contrast, the effect of TMKP1 depends on Hal3 (a negative regulator of Ppz phosphatases) and on the presence of the high-affinity potassium transporters Trk1/Trk2. Tolerance to Li(+) is also abolished in cells lacking the aldose reductase Gre3, previously shown to be involved in the resistance to this cation. This study provides evidence that the wheat TMKP1 phosphatase is contributing to reduce the exacerbated lithium toxicity in galactose-grown cells, in a way that depends on the presence of the potassium Trk transporters.


Asunto(s)
Farmacorresistencia Fúngica , Fosfatasa 1 de Especificidad Dual/metabolismo , Litio/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Triticum/enzimología , Clonación Molecular , Medios de Cultivo/química , Fosfatasa 1 de Especificidad Dual/genética , Galactosa/metabolismo , Expresión Génica , Proteínas de Transporte de Membrana/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Triticum/genética
16.
Eukaryot Cell ; 10(1): 21-33, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21076010

RESUMEN

Type 2C Ser/Thr phosphatases are a remarkable class of protein phosphatases, which are conserved in eukaryotes and involved in a large variety of functional processes. Unlike in other Ser/Thr phosphatases, the catalytic polypeptide is not usually associated with regulatory subunits, and functional specificity is achieved by encoding multiple isoforms. For fungi, most information comes from the study of type 2C protein phosphatase (PP2C) enzymes in Saccharomyces cerevisiae, where seven PP2C-encoding genes (PTC1 to -7) with diverse functions can be found. More recently, data on several Candida albicans PP2C proteins became available, suggesting that some of them can be involved in virulence. In this work we review the available literature on fungal PP2Cs and explore sequence databases to provide a comprehensive overview of these enzymes in fungi.


Asunto(s)
Proteínas Fúngicas/fisiología , Hongos/enzimología , Proteína Fosfatasa 2/fisiología , Secuencia de Aminoácidos , Animales , Aspergillus nidulans/enzimología , Candida albicans/enzimología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fusarium/enzimología , Humanos , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Schizosaccharomyces/enzimología , Transducción de Señal
17.
Biochem J ; 438(3): 523-33, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21749328

RESUMEN

Exposure of Saccharomyces cerevisiae to alkaline pH provokes a stress condition that generates a compensatory reaction. In the present study we examined a possible role for the PKA (protein kinase A) pathway in this response. Phenotypic analysis revealed that mutations that activate the PKA pathway (ira1 ira2, bcy1) tend to cause sensitivity to alkaline pH, whereas its deactivation enhances tolerance to this stress. We observed that alkalinization causes a transient decrease in cAMP, the main regulator of the pathway. Alkaline pH causes rapid nuclear localization of the PKA-regulated Msn2 transcription factor which, together with Msn4, mediates a general stress response by binding with STRE (stress response element) sequences in many promoters. Consequently, a synthetic STRE-LacZ reporter shows a rapid induction in response to alkaline stress. A msn2 msn4 mutant is sensitive to alkaline pH, and transcriptomic analysis reveals that after 10 min of alkaline stress, the expression of many induced genes (47%) depends, at least in part, on the presence of Msn2 and Msn4. Taken together, these results demonstrate that inhibition of the PKA pathway by alkaline pH represents a substantial part of the adaptive response to this kind of stress and that this response involves Msn2/Msn4-mediated genome expression remodelling. However, the relevance of attenuation of PKA in high pH tolerance is probably not restricted to regulation of Msn2 function.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , AMP Cíclico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genoma Fúngico , Concentración de Iones de Hidrógeno , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
18.
Nat Chem Biol ; 5(12): 920-8, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19915539

RESUMEN

Unlike most other organisms, the essential five-step coenzyme A biosynthetic pathway has not been fully resolved in yeast. Specifically, the genes encoding the phosphopantothenoylcysteine decarboxylase (PPCDC) activity still remain unidentified. Sequence homology analyses suggest three candidates-Ykl088w, Hal3 and Vhs3-as putative PPCDC enzymes in Saccharomyces cerevisiae. Notably, Hal3 and Vhs3 have been characterized as negative regulatory subunits of the Ppz1 protein phosphatase. Here we show that YKL088w does not encode a third Ppz1 regulatory subunit, and that the essential roles of Ykl088w and the Hal3 and Vhs3 pair are complementary, cannot be interchanged and can be attributed to PPCDC-related functions. We demonstrate that while known eukaryotic PPCDCs are homotrimers, the active yeast enzyme is a heterotrimer that consists of Ykl088w and Hal3/Vhs3 monomers that separately provides two essential catalytic residues. Our results unveil Hal3 and Vhs3 as moonlighting proteins involved in both CoA biosynthesis and protein phosphatase regulation.


Asunto(s)
Carboxiliasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Coenzima A/biosíntesis , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Carboxiliasas/genética , Carboxiliasas/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/fisiología , Unión Proteica , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología
19.
Biochem J ; 426(3): 355-64, 2010 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-20028335

RESUMEN

Maintenance of cation homoeostasis is a key process for any living organism. Specific mutations in Glc7, the essential catalytic subunit of yeast protein phosphatase 1, result in salt and alkaline pH sensitivity, suggesting a role for this protein in cation homoeostasis. We screened a collection of Glc7 regulatory subunit mutants for altered tolerance to diverse cations (sodium, lithium and calcium) and alkaline pH. Among 18 candidates, only deletion of REF2 (RNA end formation 2) yielded increased sensitivity to these conditions, as well as to diverse organic toxic cations. The Ref2F374A mutation, which renders it unable to bind Glc7, did not rescue the salt-related phenotypes of the ref2 strain, suggesting that Ref2 function in cation homoeostasis is mediated by Glc7. The ref2 deletion mutant displays a marked decrease in lithium efflux, which can be explained by the inability of these cells to fully induce the Na+-ATPase ENA1 gene. The effect of lack of Ref2 is additive to that of blockage of the calcineurin pathway and might disrupt multiple mechanisms controlling ENA1 expression. ref2 cells display a striking defect in vacuolar morphogenesis, which probably accounts for the increased calcium levels observed under standard growth conditions and the strong calcium sensitivity of this mutant. Remarkably, the evidence collected indicates that the role of Ref2 in cation homoeostasis may be unrelated to its previously identified function in the formation of mRNA via the APT (for associated with Pta1) complex.


Asunto(s)
Cationes/metabolismo , Homeostasis , Proteína Fosfatasa 1/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Secuencia de Aminoácidos , Calcineurina/genética , Calcineurina/metabolismo , Calcio/metabolismo , Cloruro de Calcio/farmacología , Concentración de Iones de Hidrógeno , Transporte Iónico , Litio/metabolismo , Cloruro de Litio/farmacología , Mutación , Proteína Fosfatasa 1/genética , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sodio/metabolismo , Cloruro de Sodio/farmacología , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
20.
Cell Metab ; 31(3): 472-492, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130880

RESUMEN

The AMPK (AMP-activated protein kinase) and TOR (target-of-rapamycin) pathways are interlinked, opposing signaling pathways involved in sensing availability of nutrients and energy and regulation of cell growth. AMPK (Yin, or the "dark side") is switched on by lack of energy or nutrients and inhibits cell growth, while TOR (Yang, or the "bright side") is switched on by nutrient availability and promotes cell growth. Genes encoding the AMPK and TOR complexes are found in almost all eukaryotes, suggesting that these pathways arose very early during eukaryotic evolution. During the development of multicellularity, an additional tier of cell-extrinsic growth control arose that is mediated by growth factors, but these often act by modulating nutrient uptake so that AMPK and TOR remain the underlying regulators of cellular growth control. In this review, we discuss the evolution, structure, and regulation of the AMPK and TOR pathways and the complex mechanisms by which they interact.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Células/metabolismo , Nutrientes/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Animales , Proliferación Celular , Daño del ADN , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA