Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Environ Res ; 141: 44-52, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30093236

RESUMEN

There is an increasing concern about the ecosystem consequences of altering macroalgal assemblages. Many macrophytes are foundation species in coastal habitats, supporting much of the biodiversity of these ecosystems by providing essential resources such as food and habitat. The addition of invasive species strongly contributes to habitat modification, but the bottom-up impacts of non-native macroalgae on higher trophic levels remains difficult to predict. The main aim of this study was to evaluate the effects of the invasive macroalga Asparagopsis taxiformis on biodiversity by comparing the mobile macrofauna inhabiting this species to the dominant native species Halopteris scoparia. This is the first comprehensive study of the possible effects of this widespread invasive species on higher trophic levels. A hierarchical sampling design with two different spatial scales was conducted to explore the consistency of the patterns observed. Fifty-nine species belonging to superorder Peracarida were found, accounting 90% of all organisms. A. taxiformis hosted an impoverished epifaunal assemblage in comparison to that associated with the native seaweed, showing significantly lower values of diversity, abundance and number of epifaunal species across study locations. The structure of the associated macrofauna (both in terms of species composition, variability among samples and relative abundance of the species) was also different. Our results highlighted the strong influence of A. taxiformis in the resident community, with differences among the two macroalgae in all the parameters considered. Finally, our results also reflect a biotic homogenization of the epifaunal assemblages associated to A. taxiformis, a scarcely explored consequence of invasive processes in marine environments. Future studies exploring the cascading effects of the observed changes in the epifaunal assemblages would be necessary in order to estimate system responses to macroalgal invasions.


Asunto(s)
Biodiversidad , Rhodophyta , Algas Marinas , Ecosistema , Especies Introducidas , Mar Mediterráneo , Dinámica Poblacional
2.
PLoS One ; 11(4): e0154776, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27124465

RESUMEN

The search for alternative live feed organisms and the progression of Integrative Multi-Trophic Aquaculture (IMTA) are currently being highly prioritised in EU strategies. Caprellids could potentially be an important exploitable resource in aquaculture due to their high levels of beneficial polyunsaturated fatty acids, fast growing nature and widespread distribution. Furthermore, since they are mainly detritivorous, they could be excellent candidates for integration into IMTA systems, potentially benefitting from uneaten feed pellets and faeces released by cultured fish in fish farms and sea-cage structures. Despite this, there is a lack of experimental studies to: (i) test inexpensive diets for caprellids, such as detritus, (ii) develop sustainable caprellid culture techniques and (iii) include caprellids in IMTA systems. The main aim of this study was to determine whether detritus (D) in the form of fish faeces provided an adequate diet for caprellids in comparison to other traditional diets, such as Artemia nauplii (A) or phytoplankton (P). Adult survival rate was shown to be significantly higher for caprellids fed with D. Conversely, hatchlings had the highest survival rate with A, although the juvenile growth rate and number of moults was similar in the three diets. With regard to lipid composition, caprellids fed with A had higher concentrations of Triacylglycerols (TAG) and Phosphatidylcholine (PC) while those fed with P or D were richer in polyunsaturated fatty acids, especially 22:6(n-3) (DHA). Interestingly, caprellids fed with D were also a rich source of 18:2(n-6) (LA), considered to be an essential fatty acid in vertebrates. It was found that detritus based mainly on fish faeces and uneaten feed pellets can be considered an adequate feed for adult caprellids, providing a source of both omega-3 (DHA) and omega-6 (LA) fatty acids. Hatchlings however seem to require an additional input of TAG and PC during juvenile stages to properly grow.


Asunto(s)
Anfípodos/fisiología , Alimentación Animal/análisis , Acuicultura/métodos , Dieta , Explotaciones Pesqueras , Animales , Ácidos Grasos Insaturados/metabolismo , Heces/química , Peces , Fosfatidilcolinas/metabolismo , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA