Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 179(5): 1222-1238.e17, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730859

RESUMEN

Mitochondrial dysfunction is associated with a spectrum of human conditions, ranging from rare, inborn errors of metabolism to the aging process. To identify pathways that modify mitochondrial dysfunction, we performed genome-wide CRISPR screens in the presence of small-molecule mitochondrial inhibitors. We report a compendium of chemical-genetic interactions involving 191 distinct genetic modifiers, including 38 that are synthetic sick/lethal and 63 that are suppressors. Genes involved in glycolysis (PFKP), pentose phosphate pathway (G6PD), and defense against lipid peroxidation (GPX4) scored high as synthetic sick/lethal. A surprisingly large fraction of suppressors are pathway intrinsic and encode mitochondrial proteins. A striking example of such "intra-organelle" buffering is the alleviation of a chemical defect in complex V by simultaneous inhibition of complex I, which benefits cells by rebalancing redox cofactors, increasing reductive carboxylation, and promoting glycolysis. Perhaps paradoxically, certain forms of mitochondrial dysfunction may best be buffered with "second site" inhibitors to the organelle.


Asunto(s)
Genes Modificadores , Mitocondrias/genética , Mitocondrias/patología , Autoantígenos/metabolismo , Muerte Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Epistasis Genética/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Genoma , Glutatión Peroxidasa/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/genética , Humanos , Células K562 , Mitocondrias/efectos de los fármacos , Oligomicinas/toxicidad , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Vía de Pentosa Fosfato/genética , Especies Reactivas de Oxígeno/metabolismo , Ribonucleoproteínas/metabolismo , Antígeno SS-B
2.
Cell ; 170(3): 564-576.e16, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753430

RESUMEN

Most human epithelial tumors harbor numerous alterations, making it difficult to predict which genes are required for tumor survival. To systematically identify cancer dependencies, we analyzed 501 genome-scale loss-of-function screens performed in diverse human cancer cell lines. We developed DEMETER, an analytical framework that segregates on- from off-target effects of RNAi. 769 genes were differentially required in subsets of these cell lines at a threshold of six SDs from the mean. We found predictive models for 426 dependencies (55%) by nonlinear regression modeling considering 66,646 molecular features. Many dependencies fall into a limited number of classes, and unexpectedly, in 82% of models, the top biomarkers were expression based. We demonstrated the basis behind one such predictive model linking hypermethylation of the UBB ubiquitin gene to a dependency on UBC. Together, these observations provide a foundation for a cancer dependency map that facilitates the prioritization of therapeutic targets.


Asunto(s)
Neoplasias/genética , Neoplasias/patología , Línea Celular Tumoral , Humanos , Interferencia de ARN , Programas Informáticos , Ubiquitina/genética
3.
Mol Cell ; 84(2): 261-276.e18, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38176414

RESUMEN

A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames (ORFs). To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a stepwise approach using multiple CRISPR-Cas9 screens to elucidate non-canonical ORFs and putative microproteins implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream ORFs (uORFs) exhibited selective functionality independent of main coding sequences. A microprotein encoded by one of these ORFs, ASNSD1-uORF or ASDURF, was upregulated, associated with MYC-family oncogenes, and promoted medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future studies seeking to define new cancer targets.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Humanos , Biosíntesis de Proteínas , Meduloblastoma/genética , Sistemas de Lectura Abierta/genética , Supervivencia Celular/genética , Neoplasias Cerebelosas/genética
4.
Nat Methods ; 21(6): 1114-1121, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594452

RESUMEN

The identification of genetic and chemical perturbations with similar impacts on cell morphology can elucidate compounds' mechanisms of action or novel regulators of genetic pathways. Research on methods for identifying such similarities has lagged due to a lack of carefully designed and well-annotated image sets of cells treated with chemical and genetic perturbations. Here we create such a Resource dataset, CPJUMP1, in which each perturbed gene's product is a known target of at least two chemical compounds in the dataset. We systematically explore the directionality of correlations among perturbations that target the same protein encoded by a given gene, and we find that identifying matches between chemical and genetic perturbations is a challenging task. Our dataset and baseline analyses provide a benchmark for evaluating methods that measure perturbation similarities and impact, and more generally, learn effective representations of cellular state from microscopy images. Such advancements would accelerate the applications of image-based profiling of cellular states, such as uncovering drug mode of action or probing functional genomics.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos
5.
Cell Genom ; 4(3): 100519, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38484704

RESUMEN

The diversity of CRISPR systems, coupled with scientific ingenuity, has led to an explosion of applications; however, to test newly described innovations in their model systems, researchers typically embark on cumbersome, one-off cloning projects to generate custom reagents that are optimized for their biological questions. Here, we leverage Golden Gate cloning to create the Fragmid toolkit, a modular set of CRISPR cassettes and delivery technologies, along with a web portal, resulting in a combinatorial platform that enables scalable vector assembly within days. We further demonstrate that multiple CRISPR technologies can be assessed in parallel in a pooled screening format using this resource, enabling the rapid optimization of both novel technologies and cellular models. These results establish Fragmid as a robust system for the rapid design of CRISPR vectors, and we anticipate that this assembly approach will be broadly useful for systematic development, comparison, and dissemination of CRISPR technologies.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Vectores Genéticos/genética
6.
Nat Commun ; 15(1): 2742, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548752

RESUMEN

The epidermal growth factor receptor, EGFR, is frequently activated in lung cancer and glioblastoma by genomic alterations including missense mutations. The different mutation spectra in these diseases are reflected in divergent responses to EGFR inhibition: significant patient benefit in lung cancer, but limited in glioblastoma. Here, we report a comprehensive mutational analysis of EGFR function. We perform saturation mutagenesis of EGFR and assess function of ~22,500 variants in a human EGFR-dependent lung cancer cell line. This approach reveals enrichment of erlotinib-insensitive variants of known and unknown significance in the dimerization, transmembrane, and kinase domains. Multiple EGFR extracellular domain variants, not associated with approved targeted therapies, are sensitive to afatinib and dacomitinib in vitro. Two glioblastoma patients with somatic EGFR G598V dimerization domain mutations show responses to dacomitinib treatment followed by within-pathway resistance mutation in one case. In summary, this comprehensive screen expands the landscape of functional EGFR variants and suggests broader clinical investigation of EGFR inhibition for cancers harboring extracellular domain mutations.


Asunto(s)
Glioblastoma , Neoplasias Pulmonares , Humanos , Glioblastoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación
7.
Cancer Res ; 83(2): 285-300, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36398965

RESUMEN

Aberrant RAS/MAPK signaling is a common driver of oncogenesis that can be therapeutically targeted with clinically approved MEK inhibitors. Disease progression on single-agent MEK inhibitors is common, however, and combination therapies are typically required to achieve significant clinical benefit in advanced cancers. Here we focused on identifying MEK inhibitor-based combination therapies in neuroblastoma with mutations that activate the RAS/MAPK signaling pathway, which are rare at diagnosis but frequent in relapsed neuroblastoma. A genome-scale CRISPR-Cas9 functional genomic screen was deployed to identify genes that when knocked out sensitize RAS-mutant neuroblastoma to MEK inhibition. Loss of either CCNC or CDK8, two members of the mediator kinase module, sensitized neuroblastoma to MEK inhibition. Furthermore, small-molecule kinase inhibitors of CDK8 improved response to MEK inhibitors in vitro and in vivo in RAS-mutant neuroblastoma and other adult solid tumors. Transcriptional profiling revealed that loss of CDK8 or CCNC antagonized the transcriptional signature induced by MEK inhibition. When combined, loss of CDK8 or CCNC prevented the compensatory upregulation of progrowth gene expression induced by MEK inhibition. These findings propose a new therapeutic combination for RAS-mutant neuroblastoma and may have clinical relevance for other RAS-driven malignancies. SIGNIFICANCE: Transcriptional adaptation to MEK inhibition is mediated by CDK8 and can be blocked by the addition of CDK8 inhibitors to improve response to MEK inhibitors in RAS-mutant neuroblastoma, a clinically challenging disease.


Asunto(s)
Recurrencia Local de Neoplasia , Neuroblastoma , Adulto , Humanos , Línea Celular Tumoral , Recurrencia Local de Neoplasia/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/patología , Mutación , Quinasas de Proteína Quinasa Activadas por Mitógenos , Quinasa 8 Dependiente de Ciclina/genética
8.
Cell Genom ; 3(9): 100387, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37719144

RESUMEN

Cas12a CRISPR technology, unlike Cas9, allows for facile multiplexing of guide RNAs from a single transcript, simplifying combinatorial perturbations. While Cas12a has been implemented for multiplexed knockout genetic screens, it has yet to be optimized for CRISPR activation (CRISPRa) screens in human cells. Here, we develop a new Cas12a-based transactivation domain (TAD) recruitment system using the ALFA nanobody and demonstrate simultaneous activation of up to four genes. We screen a genome-wide library to identify modulators of growth and MEK inhibition, and we compare these results with those obtained with open reading frame (ORF) overexpression and Cas9-based CRISPRa. We find that the activity of multiplexed arrays is largely predictable from the best-performing guide and provide criteria for selecting active guides. We anticipate that these results will greatly accelerate the exploration of gene function and combinatorial phenotypes at scale.

9.
Nat Protoc ; 18(7): 2014-2031, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286821

RESUMEN

Spheroid culture systems have allowed in vitro propagation of cells unable to grow in canonical cell culturing conditions, and may capture cellular contexts that model tumor growth better than current model systems. The insights gleaned from genome-wide clustered regularly interspaced short palindromic repeat (CRISPR) screening of thousands of cancer cell lines grown in conventional culture conditions illustrate the value of such CRISPR pooled screens. It is clear that similar genome-wide CRISPR screens of three-dimensional spheroid cultures will be important for future biological discovery. Here, we present a protocol for genome-wide CRISPR screening of three-dimensional neurospheres. While many in-depth protocols and discussions have been published for more typical cell lines, few detailed protocols are currently available in the literature for genome-wide screening in spheroidal cell lines. For those who want to screen such cell lines, and particularly neurospheres, we provide a step-by-step description of assay development tests to be performed before screening, as well as for the screen itself. We highlight considerations of variables that make these screens distinct from, or similar to, typical nonspheroid cell lines throughout. Finally, we illustrate typical outcomes of neurosphere genome-wide screens, and how neurosphere screens typically produce slightly more heterogeneous signal distributions than more canonical cancer cell lines. Completion of this entire protocol will take 8-12 weeks from the initial assay development tests to deconvolution of the sequencing data.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sistemas CRISPR-Cas , Genoma , Línea Celular
10.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37961518

RESUMEN

The diversity of CRISPR systems, coupled with scientific ingenuity, has led to an explosion of applications; however, to test newly-described innovations in their model systems, researchers typically embark on cumbersome, one-off cloning projects to generate custom reagents that are optimized for their biological questions. Here, we leverage Golden Gate cloning to create the Fragmid toolkit, a modular set of CRISPR cassettes and delivery technologies, along with a web portal, resulting in a combinatorial platform that enables scalable vector assembly within days. We further demonstrate that multiple CRISPR technologies can be assessed in parallel in a pooled screening format using this resource, enabling the rapid optimization of both novel technologies and cellular models. These results establish Fragmid as a robust system for the rapid design of CRISPR vectors, and we anticipate that this assembly approach will be broadly useful for systematic development, comparison, and dissemination of CRISPR technologies.

11.
Nat Commun ; 14(1): 1933, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024492

RESUMEN

Identifying the spectrum of genes required for cancer cell survival can reveal essential cancer circuitry and therapeutic targets, but such a map remains incomplete for many cancer types. We apply genome-scale CRISPR-Cas9 loss-of-function screens to map the landscape of selectively essential genes in chordoma, a bone cancer with few validated targets. This approach confirms a known chordoma dependency, TBXT (T; brachyury), and identifies a range of additional dependencies, including PTPN11, ADAR, PRKRA, LUC7L2, SRRM2, SLC2A1, SLC7A5, FANCM, and THAP1. CDK6, SOX9, and EGFR, genes previously implicated in chordoma biology, are also recovered. We find genomic and transcriptomic features that predict specific dependencies, including interferon-stimulated gene expression, which correlates with ADAR dependence and is elevated in chordoma. Validating the therapeutic relevance of dependencies, small-molecule inhibitors of SHP2, encoded by PTPN11, have potent preclinical efficacy against chordoma. Our results generate an emerging map of chordoma dependencies to enable biological and therapeutic hypotheses.


Asunto(s)
Neoplasias Óseas , Cordoma , Humanos , Cordoma/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Genes Esenciales , Perfilación de la Expresión Génica , Transcriptoma , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , ADN Helicasas/metabolismo
12.
bioRxiv ; 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37205492

RESUMEN

A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames. To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a step-wise approach to employ multiple CRISPR-Cas9 screens to elucidate functional non-canonical ORFs implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream open reading frames (uORFs) exhibited selective functionality independent of the main coding sequence. One of these, ASNSD1-uORF or ASDURF, was upregulated, associated with the MYC family oncogenes, and was required for medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future cancer genomics studies seeking to define new cancer targets.

13.
Nat Protoc ; 18(7): 1981-2013, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37344608

RESUMEN

In image-based profiling, software extracts thousands of morphological features of cells from multi-channel fluorescence microscopy images, yielding single-cell profiles that can be used for basic research and drug discovery. Powerful applications have been proven, including clustering chemical and genetic perturbations on the basis of their similar morphological impact, identifying disease phenotypes by observing differences in profiles between healthy and diseased cells and predicting assay outcomes by using machine learning, among many others. Here, we provide an updated protocol for the most popular assay for image-based profiling, Cell Painting. Introduced in 2013, it uses six stains imaged in five channels and labels eight diverse components of the cell: DNA, cytoplasmic RNA, nucleoli, actin, Golgi apparatus, plasma membrane, endoplasmic reticulum and mitochondria. The original protocol was updated in 2016 on the basis of several years' experience running it at two sites, after optimizing it by visual stain quality. Here, we describe the work of the Joint Undertaking for Morphological Profiling Cell Painting Consortium, to improve upon the assay via quantitative optimization by measuring the assay's ability to detect morphological phenotypes and group similar perturbations together. The assay gives very robust outputs despite various changes to the protocol, and two vendors' dyes work equivalently well. We present Cell Painting version 3, in which some steps are simplified and several stain concentrations can be reduced, saving costs. Cell culture and image acquisition take 1-2 weeks for typically sized batches of ≤20 plates; feature extraction and data analysis take an additional 1-2 weeks.This protocol is an update to Nat. Protoc. 11, 1757-1774 (2016): https://doi.org/10.1038/nprot.2016.105.


Asunto(s)
Técnicas de Cultivo de Célula , Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente , Mitocondrias , Programas Informáticos
14.
Nat Commun ; 13(1): 604, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105861

RESUMEN

The role of PPM1D mutations in de novo gliomagenesis has not been systematically explored. Here we analyze whole genome sequences of 170 pediatric high-grade gliomas and find that truncating mutations in PPM1D that increase the stability of its phosphatase are clonal driver events in 11% of Diffuse Midline Gliomas (DMGs) and are enriched in primary pontine tumors. Through the development of DMG mouse models, we show that PPM1D mutations potentiate gliomagenesis and that PPM1D phosphatase activity is required for in vivo oncogenesis. Finally, we apply integrative phosphoproteomic and functional genomics assays and find that oncogenic effects of PPM1D truncation converge on regulators of cell cycle, DNA damage response, and p53 pathways, revealing therapeutic vulnerabilities including MDM2 inhibition.


Asunto(s)
Glioma/genética , Mutación , Oncogenes/genética , Proteína Fosfatasa 2C/genética , Adolescente , Adulto , Animales , Neoplasias del Tronco Encefálico/genética , Carcinogénesis/genética , Ciclo Celular , Niño , Preescolar , Daño del ADN , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Lactante , Masculino , Ratones , Proteínas Proto-Oncogénicas c-mdm2 , Transcriptoma , Proteína p53 Supresora de Tumor/genética , Adulto Joven
15.
Cancer Discov ; 12(12): 2880-2905, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36305736

RESUMEN

Diffuse midline gliomas are uniformly fatal pediatric central nervous system cancers that are refractory to standard-of-care therapeutic modalities. The primary genetic drivers are a set of recurrent amino acid substitutions in genes encoding histone H3 (H3K27M), which are currently undruggable. These H3K27M oncohistones perturb normal chromatin architecture, resulting in an aberrant epigenetic landscape. To interrogate for epigenetic dependencies, we performed a CRISPR screen and show that patient-derived H3K27M-glioma neurospheres are dependent on core components of the mammalian BAF (SWI/SNF) chromatin remodeling complex. The BAF complex maintains glioma stem cells in a cycling, oligodendrocyte precursor cell-like state, in which genetic perturbation of the BAF catalytic subunit SMARCA4 (BRG1), as well as pharmacologic suppression, opposes proliferation, promotes progression of differentiation along the astrocytic lineage, and improves overall survival of patient-derived xenograft models. In summary, we demonstrate that therapeutic inhibition of the BAF complex has translational potential for children with H3K27M gliomas. SIGNIFICANCE: Epigenetic dysregulation is at the core of H3K27M-glioma tumorigenesis. Here, we identify the BRG1-BAF complex as a critical regulator of enhancer and transcription factor landscapes, which maintain H3K27M glioma in their progenitor state, precluding glial differentiation, and establish pharmacologic targeting of the BAF complex as a novel treatment strategy for pediatric H3K27M glioma. See related commentary by Beytagh and Weiss, p. 2730. See related article by Mo et al., p. 2906.


Asunto(s)
Epigenoma , Glioma , Animales , Humanos , Mutación , Glioma/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Madre Neoplásicas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , ADN Helicasas/genética , Proteínas Nucleares/genética
16.
Nat Biotechnol ; 39(6): 697-704, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33510483

RESUMEN

Although genomic analyses predict many noncanonical open reading frames (ORFs) in the human genome, it is unclear whether they encode biologically active proteins. Here we experimentally interrogated 553 candidates selected from noncanonical ORF datasets. Of these, 57 induced viability defects when knocked out in human cancer cell lines. Following ectopic expression, 257 showed evidence of protein expression and 401 induced gene expression changes. Clustered regularly interspaced short palindromic repeat (CRISPR) tiling and start codon mutagenesis indicated that their biological effects required translation as opposed to RNA-mediated effects. We found that one of these ORFs, G029442-renamed glycine-rich extracellular protein-1 (GREP1)-encodes a secreted protein highly expressed in breast cancer, and its knockout in 263 cancer cell lines showed preferential essentiality in breast cancer-derived lines. The secretome of GREP1-expressing cells has an increased abundance of the oncogenic cytokine GDF15, and GDF15 supplementation mitigated the growth-inhibitory effect of GREP1 knockout. Our experiments suggest that noncanonical ORFs can express biologically active proteins that are potential therapeutic targets.


Asunto(s)
Supervivencia Celular/fisiología , Proteínas de Neoplasias/genética , Neoplasias/patología , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Células HEK293 , Humanos , Proteínas de Neoplasias/fisiología , Neoplasias/genética , Sistemas de Lectura Abierta
17.
Cell Syst ; 10(1): 52-65.e7, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31668800

RESUMEN

Cancer evolution poses a central obstacle to cure, as resistant clones expand under therapeutic selection pressures. Genome sequencing of relapsed disease can nominate genomic alterations conferring resistance but sample collection lags behind, limiting therapeutic innovation. Genome-wide screens offer a complementary approach to chart the compendium of escape genotypes, anticipating clinical resistance. We report genome-wide open reading frame (ORF) resistance screens for first- and third-generation epidermal growth factor receptor (EGFR) inhibitors and a MEK inhibitor. Using serial sampling, dose gradients, and mathematical modeling, we generate genotype-fitness maps across therapeutic contexts and identify alterations that escape therapy. Our data expose varying dose-fitness relationship across genotypes, ranging from complete dose invariance to paradoxical dose dependency where fitness increases in higher doses. We predict fitness with combination therapy and compare these estimates to genome-wide fitness maps of drug combinations, identifying genotypes where combination therapy results in unexpected inferior effectiveness. These data are applied to nominate combination optimization strategies to forestall resistant disease.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Acrilamidas/administración & dosificación , Acrilamidas/farmacología , Adenocarcinoma del Pulmón/enzimología , Compuestos de Anilina/administración & dosificación , Compuestos de Anilina/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bencimidazoles/administración & dosificación , Bencimidazoles/farmacología , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/administración & dosificación , Clorhidrato de Erlotinib/farmacología , Aptitud Genética , Genotipo , Humanos , Neoplasias Pulmonares/enzimología , Sistema de Señalización de MAP Quinasas
18.
Cancer Discov ; 10(2): 214-231, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31771968

RESUMEN

Spleen tyrosine kinase (SYK) is a nonmutated therapeutic target in acute myeloid leukemia (AML). Attempts to exploit SYK therapeutically in AML have shown promising results in combination with chemotherapy, likely reflecting induced mechanisms of resistance to single-agent treatment in vivo. We conducted a genome-scale open reading frame (ORF) resistance screen and identified activation of the RAS-MAPK-ERK pathway as one major mechanism of resistance to SYK inhibitors. This finding was validated in AML cell lines with innate and acquired resistance to SYK inhibitors. Furthermore, patients with AML with select mutations activating these pathways displayed early resistance to SYK inhibition. To circumvent SYK inhibitor therapy resistance in AML, we demonstrate that a MEK and SYK inhibitor combination is synergistic in vitro and in vivo. Our data provide justification for use of ORF screening to identify resistance mechanisms to kinase inhibitor therapy in AML lacking distinct mutations and to direct novel combination-based strategies to abrogate these. SIGNIFICANCE: The integration of functional genomic screening with the study of mechanisms of intrinsic and acquired resistance in model systems and human patients identified resistance to SYK inhibitors through MAPK signaling in AML. The dual targeting of SYK and the MAPK pathway offers a combinatorial strategy to overcome this resistance.This article is highlighted in the In This Issue feature, p. 161.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Resistencia a Antineoplásicos/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasa Syk/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Benzamidas/farmacología , Benzamidas/uso terapéutico , Línea Celular Tumoral , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Difenilamina/análogos & derivados , Difenilamina/farmacología , Difenilamina/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Indazoles/farmacología , Indazoles/uso terapéutico , Leucemia Mieloide Aguda/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Sistemas de Lectura Abierta/genética , Cultivo Primario de Células , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Pirazinas/farmacología , Pirazinas/uso terapéutico , Quinasa Syk/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cancer Res ; 79(9): 2352-2366, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30819666

RESUMEN

Combinatorial inhibition of MEK1/2 and CDK4/6 is currently undergoing clinical investigation in NRAS-mutant melanoma. To prospectively map the landscape of resistance to this investigational regimen, we utilized a series of gain- and loss-of-function forward genetic screens to identify modulators of resistance to clinical inhibitors of MEK1/2 and CDK4/6 alone and in combination. First, we identified NRAS-mutant melanoma cell lines that were dependent on NRAS for proliferation and sensitive to MEK1/2 and CDK4/6 combination treatment. We then used a genome-scale ORF overexpression screen and a CRISPR knockout screen to identify modulators of resistance to each inhibitor alone or in combination. These orthogonal screening approaches revealed concordant means of achieving resistance to this therapeutic modality, including tyrosine kinases, RAF, RAS, AKT, and PI3K signaling. Activated KRAS was sufficient to cause resistance to combined MEK/CDK inhibition and to replace genetic depletion of oncogenic NRAS. In summary, our comprehensive functional genetic screening approach revealed modulation of resistance to the inhibition of MEK1/2, CDK4/6, or their combination in NRAS-mutant melanoma. SIGNIFICANCE: These findings reveal that NRAS-mutant melanomas can acquire resistance to genetic ablation of NRAS or combination MEK1/2 and CDK4/6 inhibition by upregulating activity of the RTK-RAS-RAF and RTK-PI3K-AKT signaling cascade.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , GTP Fosfohidrolasas/genética , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Melanoma/tratamiento farmacológico , Proteínas de la Membrana/genética , Mutación , Antineoplásicos/farmacología , Apoptosis , Puntos de Control del Ciclo Celular , Proliferación Celular , Humanos , Melanoma/genética , Melanoma/patología , Fosforilación , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas
20.
Clin Cancer Res ; 25(4): 1343-1357, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30397176

RESUMEN

PURPOSE: Novel targeted therapeutics have transformed the care of subsets of patients with cancer. In pediatric malignancies, however, with simple tumor genomes and infrequent targetable mutations, there have been few new FDA-approved targeted drugs. The cyclin-dependent kinase (CDK)4/6 pathway recently emerged as a dependency in Ewing sarcoma. Given the heightened efficacy of this class with targeted drug combinations in other cancers, as well as the propensity of resistance to emerge with single agents, we aimed to identify genes mediating resistance to CDK4/6 inhibitors and biologically relevant combinations for use with CDK4/6 inhibitors in Ewing. EXPERIMENTAL DESIGN: We performed a genome-scale open reading frame (ORF) screen in 2 Ewing cell lines sensitive to CDK4/6 inhibitors to identify genes conferring resistance. Concurrently, we established resistance to a CDK4/6 inhibitor in a Ewing cell line. RESULTS: The ORF screen revealed IGF1R as a gene whose overexpression promoted drug escape. We also found elevated levels of phospho-IGF1R in our resistant Ewing cell line, supporting the relevance of IGF1R signaling to acquired resistance. In a small-molecule screen, an IGF1R inhibitor scored as synergistic with CDK4/6 inhibitor treatment. The combination of CDK4/6 inhibitors and IGF1R inhibitors was synergistic in vitro and active in mouse models. Mechanistically, this combination more profoundly repressed cell cycle and PI3K/mTOR signaling than either single drug perturbation. CONCLUSIONS: Taken together, these results suggest that IGF1R inhibitors activation is an escape mechanism to CDK4/6 inhibitors in Ewing sarcoma and that dual targeting of CDK4/6 inhibitors and IGF1R inhibitors provides a candidate synergistic combination for clinical application in this disease.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Receptor IGF Tipo 1/genética , Sarcoma de Ewing/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Receptor IGF Tipo 1/antagonistas & inhibidores , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA