RESUMEN
Campylobacter jejuni monitors intestinal metabolites produced by the host and microbiota to initiate intestinal colonization of avian and animal hosts for commensalism and infection of humans for diarrheal disease. We previously discovered that C. jejuni has the capacity to spatially discern different intestinal regions by sensing lactate and the short-chain fatty acids acetate and butyrate and then alter transcription of colonization factors appropriately for in vivo growth. In this study, we identified the C. jejuni butyrate-modulated regulon and discovered that the BumSR two-component signal transduction system (TCS) directs a response to butyrate by identifying mutants in a genetic screen defective for butyrate-modulated transcription. The BumSR TCS, which is important for infection of humans and optimal colonization of avian hosts, senses butyrate likely by indirect means to alter transcription of genes encoding important colonization determinants. Unlike many canonical TCSs, the predicted cytoplasmic sensor kinase BumS lacked in vitro autokinase activity, which would normally lead to phosphorylation of the cognate BumR response regulator. Instead, BumS has likely evolved mutations to naturally function as a phosphatase whose activity is influenced by exogenous butyrate to control the level of endogenous phosphorylation of BumR and its ability to alter transcription of target genes. To our knowledge, the BumSR TCS is the only bacterial signal transduction system identified so far that mediates responses to the microbiota-generated intestinal metabolite butyrate, an important factor for host intestinal health and homeostasis. Our findings suggest that butyrate sensing by this system is vital for C. jejuni colonization of multiple hosts.
Asunto(s)
Proteínas Bacterianas , Butiratos/metabolismo , Campylobacter jejuni , Regulación Bacteriana de la Expresión Génica/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Campylobacter/microbiología , Pollos , Humanos , Monoéster Fosfórico Hidrolasas/genética , Transducción de Señal/genéticaRESUMEN
Teeth are an integral component of feeding ecology, with a clear link between tooth morphology and diet, as without suitable dentition prey cannot be captured nor broken down for consumption. Bull sharks, Carcharhinus leucas, undergo an ontogenetic niche shift from freshwater to marine habitats, which raises the question: does tooth morphology change with ontogeny? Tooth shape, surface area and thickness were measured using both morphometrics and elliptic Fourier analysis to determine if morphology varied with position in the jaw and if there was an ontogenetic change concordant with this niche shift. Significant ontogenetic differences in tooth morphology as a function of position in the jaw and shark total length were found, with upper and lower jaws of bull sharks presenting two different tooth morphologies. Tooth shape and thickness fell into two groupings, anterior and posterior, in both the upper and lower jaws. Tooth surface area, however, indicated three groupings, mesial, intermediate and distal, in both the upper and lower jaws. While tooth morphology changed significantly with size, showing an inflection at sharks of 135 cm total length, each morphological aspect retained the same tooth groupings throughout. These ontogenetic differences in tooth morphologies reflect tooth strength, prey handling and heterodonty.
Asunto(s)
Tiburones , Diente , Animales , Ecosistema , Maxilares/anatomía & histología , Tiburones/anatomía & histología , Diente/anatomía & histología , DietaRESUMEN
The RV144 HIV vaccine trial included a recombinant HIV glycoprotein 120 (gp120) construct fused to a small portion of herpes simplex virus 1 (HSV-1) glycoprotein D (gD) so that the first 40 amino acids of gp120 were replaced by the signal sequence and the first 27 amino acids of the mature form of gD. This region of gD contains most of the binding site for HVEM, an HSV receptor important for virus infection of epithelial cells and lymphocytes. RV144 induced antibodies to HIV that were partially protective against infection, as well as antibodies to HSV. We derived monoclonal antibodies (MAbs) from peripheral blood B cells of recipients of the RV144 HIV vaccine and showed that these antibodies neutralized HSV-1 infection in cells expressing HVEM, but not the other major virus receptor, nectin-1. The MAbs mediated antibody-dependent cellular cytotoxicity (ADCC), and mice that received the MAbs and were then challenged by corneal inoculation with HSV-1 had reduced eye disease, shedding, and latent infection. To our knowledge, this is the first description of MAbs derived from human recipients of a vaccine that specifically target the HVEM binding site of gD. In summary, we found that monoclonal antibodies derived from humans vaccinated with the HVEM binding domain of HSV-1 gD (i) neutralized HSV-1 infection in a cell receptor-specific manner, (ii) mediated ADCC, and (iii) reduced ocular disease in virus-infected mice.IMPORTANCE Herpes simplex virus 1 (HSV-1) causes cold sores and neonatal herpes and is a leading cause of blindness. Despite many trials, no HSV vaccine has been approved. Nectin-1 and HVEM are the two major cellular receptors for HSV. These receptors are expressed at different levels in various tissues, and the role of each receptor in HSV pathogenesis is not well understood. We derived human monoclonal antibodies from persons who received the HIV RV144 vaccine that contained the HVEM binding domain of HSV-1 gD fused to HIV gp120. These antibodies were able to specifically neutralize HSV-1 infection in vitro via HVEM. Furthermore, we showed for the first time that HVEM-specific HSV-1 neutralizing antibodies protect mice from HSV-1 eye disease, indicating the critical role of HVEM in HSV-1 ocular infection.
Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Monoclonales/inmunología , Oftalmopatías/prevención & control , Proteína gp120 de Envoltorio del VIH/inmunología , Herpes Simple/prevención & control , Miembro 14 de Receptores del Factor de Necrosis Tumoral/inmunología , Simplexvirus/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Línea Celular , Oftalmopatías/virología , Femenino , Proteína gp120 de Envoltorio del VIH/genética , Herpes Simple/inmunología , Herpes Simple/virología , Humanos , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Simplexvirus/genética , Proteínas del Envoltorio Viral/genéticaRESUMEN
UNLABELLED: A recent phase 3 trial with soluble herpes simplex virus 2 (HSV-2) glycoprotein D (gD2t) in adjuvant failed to show protection against genital herpes. We postulated that live attenuated HSV-2 would provide more HSV antigens for induction of virus-specific antibodies and cellular immunity than would gD2t. We previously reported an HSV-2 mutant, HSV2-gD27, in which the nectin-1 binding domain of gD2 is altered so that the virus is impaired for infecting neural cells, but not epithelial cells, in vitro and is impaired for infecting dorsal root ganglia in mice (K. Wang, J. D. Kappel, C. Canders, W. F. Davila, D. Sayre, M. Chavez, L. Pesnicak, and J. I. Cohen, J Virol 86:12891-12902, 2012, doi:10.1128/JVI.01055-12). Here we report that the mutations in HSV2-gD27 were stable when the virus was passaged in cell culture and during acute infection of mice. HSV2-gD27 was attenuated in mice when it was inoculated onto the cornea, intramuscularly (i.m.), intravaginally, and intracranially. Vaccination of mice i.m. with HSV2-gD27 provided better inhibition of challenge virus replication in the vagina than when the virus was used to vaccinate mice intranasally or subcutaneously. Comparison of i.m. vaccinations with HSV2-gD27 versus gD2t in adjuvant showed that HSV2-gD27 induced larger reductions of challenge virus replication in the vagina and reduced latent viral loads in dorsal root ganglia but induced lower serum neutralizing antibody titers than those obtained with gD2t in adjuvant. Taken together, our data indicate that a live attenuated HSV-2 vaccine impaired for infection of neurons provides better protection from vaginal challenge with HSV-2 than that obtained with a subunit vaccine, despite inducing lower titers of HSV-2 neutralizing antibodies in the serum. IMPORTANCE: Genital herpes simplex is one of the most prevalent sexually transmitted diseases. Though HSV-2 disease is usually mild, it can be life threatening in neonates and immunocompromised persons. In addition, genital herpes increases the frequency of HIV infection and transmission. HSV-2 maintains a latent infection in sensory neurons and cannot be cleared with antiviral drugs. The virus frequently reactivates, resulting in virus shedding in the genital area, which serves as a source for transmission. A prophylactic vaccine is needed to prevent disease and to control the spread of the virus. Previous human trials of subunit vaccines have been unsuccessful. Here we report the results of vaccinating mice with a new type of live attenuated HSV-2 vaccine that is impaired for infection of neurons and provides better protection of mice than that obtained with a subunit vaccine. The strategy of altering the cell tropism of a virus is a new approach for a live attenuated vaccine.
Asunto(s)
Herpesvirus Humano 2/inmunología , Herpesvirus Humano 2/fisiología , Vacunas contra Herpesvirus/inmunología , Proteínas del Envoltorio Viral/inmunología , Tropismo Viral , Animales , Línea Celular , Femenino , Inestabilidad Genómica , Herpesvirus Humano 2/genética , Vacunas contra Herpesvirus/administración & dosificación , Vacunas contra Herpesvirus/genética , Inyecciones Intramusculares , Ratones Endogámicos BALB C , Pase Seriado , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vagina/virología , Proteínas del Envoltorio Viral/genética , Carga ViralRESUMEN
UNLABELLED: No herpes simplex virus 2 (HSV-2) vaccine has been licensed for use in humans. HSV-2 glycoproteins B (gB) and D (gD) are targets of neutralizing antibodies and T cells, but clinical trials involving intramuscular (i.m.) injection of HSV-2 gB and gD in adjuvants have not been effective. Here we evaluated intravaginal (ivag) genetic immunization of C57BL/6 mice with a replication-defective human papillomavirus pseudovirus (HPV PsV) expressing HSV-2 gB (HPV-gB) or gD (HPV-gD) constructs to target different subcellular compartments. HPV PsV expressing a secreted ectodomain of gB (gBsec) or gD (gDsec), but not PsV expressing a cytoplasmic or membrane-bound form, induced circulating and intravaginal-tissue-resident memory CD8(+) T cells that were able to secrete gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) as well as moderate levels of serum HSV neutralizing antibodies. Combined immunization with HPV-gBsec and HPV-gDsec (HPV-gBsec/gDsec) vaccines conferred longer survival after vaginal challenge with HSV-2 than immunization with HPV-gBsec or HPV-gDsec alone. HPV-gBsec/gDsec ivag vaccination was associated with a reduced severity of genital lesions and lower levels of viral shedding in the genital tract after HSV-2 challenge. In contrast, intramuscular vaccination with a soluble truncated gD protein (gD2t) in alum and monophosphoryl lipid A (MPL) elicited high neutralizing antibody titers and improved survival but did not reduce genital lesions and viral shedding. Vaccination combining ivag HPV-gBsec/gDsec and i.m. gD2t-alum-MPL improved survival and reduced genital lesions and viral shedding. Finally, high levels of circulating HSV-2-specific CD8(+) T cells, but not serum antibodies, correlated with reduced viral shedding. Taken together, our data underscore the potential of HPV PsV as a platform for a topical mucosal vaccine to control local manifestations of primary HSV-2 infection. IMPORTANCE: Genital herpes is a highly prevalent chronic disease caused by HSV infection. To date, there is no licensed vaccine against HSV infection. This study describes intravaginal vaccination with a nonreplicating HPV-based vector expressing HSV glycoprotein antigens. The data presented in this study underscore the potential of HPV-based vectors as a platform for the induction of genital-tissue-resident memory T cell responses and the control of local manifestations of primary HSV infection.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Herpes Genital/prevención & control , Vacunas contra Herpesvirus/inmunología , Papillomaviridae/genética , Proteínas del Envoltorio Viral/inmunología , Esparcimiento de Virus , Administración Intravaginal , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos , Herpes Genital/inmunología , Herpes Genital/patología , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/inmunología , Vacunas contra Herpesvirus/administración & dosificación , Vacunas contra Herpesvirus/genética , Memoria Inmunológica , Inyecciones Intramusculares , Interferón gamma/metabolismo , Ratones Endogámicos C57BL , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Análisis de Supervivencia , Factor de Necrosis Tumoral alfa/metabolismo , Vacunación/métodos , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Proteínas del Envoltorio Viral/genéticaRESUMEN
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.
RESUMEN
Congenital nephrotic syndrome is an autosomal recessive inherited disorder that manifests as steroid-resistant massive proteinuria in the first three months of life. Defects in the glomerular filtration mechanism are the primary etiology. We present a child who developed severe nephrotic syndrome at two weeks of age and eventually required a bilateral nephrectomy. Genetic testing revealed compound heterozygous variants in NPHS1 including a known pathogenic variant and a missense variant of uncertain significance. Light microscopy revealed crescent formation-an atypical finding in congenital nephrotic syndrome caused by nephrin variants-in addition to focal segmental and global glomerulosclerosis. Electron microscopy showed diffuse podocyte foot process effacement. Confocal and Airyscan immunofluorescence microcopy showed aggregation of nephrin in the podocyte cell body that is not a result of diffuse podocyte foot process effacement as seen in minimal change disease. These findings confirm the novel variant as pathogenic.