Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 42(8): 4800-12, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24523353

RESUMEN

Cys(2)-His(2) zinc finger proteins (ZFPs) are the largest family of transcription factors in higher metazoans. They also represent the most diverse family with regards to the composition of their recognition sequences. Although there are a number of ZFPs with characterized DNA-binding preferences, the specificity of the vast majority of ZFPs is unknown and cannot be directly inferred by homology due to the diversity of recognition residues present within individual fingers. Given the large number of unique zinc fingers and assemblies present across eukaryotes, a comprehensive predictive recognition model that could accurately estimate the DNA-binding specificity of any ZFP based on its amino acid sequence would have great utility. Toward this goal, we have used the DNA-binding specificities of 678 two-finger modules from both natural and artificial sources to construct a random forest-based predictive model for ZFP recognition. We find that our recognition model outperforms previously described determinant-based recognition models for ZFPs, and can successfully estimate the specificity of naturally occurring ZFPs with previously defined specificities.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Dedos de Zinc , Inteligencia Artificial , Sitios de Unión , ADN/química , Proteínas de Unión al ADN/química , Modelos Biológicos , Motivos de Nucleótidos , Factores de Transcripción/química
2.
Nat Methods ; 8(1): 67-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21151135

RESUMEN

Engineered zinc-finger nucleases (ZFNs) enable targeted genome modification. Here we describe context-dependent assembly (CoDA), a platform for engineering ZFNs using only standard cloning techniques or custom DNA synthesis. Using CoDA-generated ZFNs, we rapidly altered 20 genes in Danio rerio, Arabidopsis thaliana and Glycine max. The simplicity and efficacy of CoDA will enable broad adoption of ZFN technology and make possible large-scale projects focused on multigene pathways or genome-wide alterations.


Asunto(s)
Endonucleasas/genética , Endonucleasas/metabolismo , Ingeniería de Proteínas , Dedos de Zinc/fisiología , Animales , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genoma , Glycine max/genética , Pez Cebra/genética , Dedos de Zinc/genética
3.
Nucleic Acids Res ; 40(12): 5560-8, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22373919

RESUMEN

Engineered zinc finger nucleases (ZFNs) induce DNA double-strand breaks at specific recognition sequences and can promote efficient introduction of desired insertions, deletions or substitutions at or near the cut site via homology-directed repair (HDR) with a double- and/or single-stranded donor DNA template. However, mutagenic events caused by error-prone non-homologous end-joining (NHEJ)-mediated repair are introduced with equal or higher frequency at the nuclease cleavage site. Furthermore, unintended mutations can also result from NHEJ-mediated repair of off-target nuclease cleavage sites. Here, we describe a simple and general method for converting engineered ZFNs into zinc finger nickases (ZFNickases) by inactivating the catalytic activity of one monomer in a ZFN dimer. ZFNickases show robust strand-specific nicking activity in vitro. In addition, we demonstrate that ZFNickases can stimulate HDR at their nicking site in human cells, albeit at a lower frequency than by the ZFNs from which they were derived. Finally, we find that ZFNickases appear to induce greatly reduced levels of mutagenic NHEJ at their target nicking site. ZFNickases thus provide a promising means for inducing HDR-mediated gene modifications while reducing unwanted mutagenesis caused by error-prone NHEJ.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Reparación del ADN por Recombinación , Línea Celular , División del ADN , Reparación del ADN por Unión de Extremidades , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Mutagénesis , Ingeniería de Proteínas/métodos , Dedos de Zinc
4.
Plant Physiol ; 156(2): 466-73, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21464476

RESUMEN

We performed targeted mutagenesis of a transgene and nine endogenous soybean (Glycine max) genes using zinc-finger nucleases (ZFNs). A suite of ZFNs were engineered by the recently described context-dependent assembly platform--a rapid, open-source method for generating zinc-finger arrays. Specific ZFNs targeting dicer-like (DCL) genes and other genes involved in RNA silencing were cloned into a vector under an estrogen-inducible promoter. A hairy-root transformation system was employed to investigate the efficiency of ZFN mutagenesis at each target locus. Transgenic roots exhibited somatic mutations localized at the ZFN target sites for seven out of nine targeted genes. We next introduced a ZFN into soybean via whole-plant transformation and generated independent mutations in the paralogous genes DCL4a and DCL4b. The dcl4b mutation showed efficient heritable transmission of the ZFN-induced mutation in the subsequent generation. These findings indicate that ZFN-based mutagenesis provides an efficient method for making mutations in duplicate genes that are otherwise difficult to study due to redundancy. We also developed a publicly accessible Web-based tool to identify sites suitable for engineering context-dependent assembly ZFNs in the soybean genome.


Asunto(s)
Endonucleasas/química , Endonucleasas/metabolismo , Genes Duplicados/genética , Genes de Plantas/genética , Técnicas Genéticas , Glycine max/genética , Mutagénesis/genética , Dedos de Zinc/genética , Secuencia de Bases , Proteínas Fluorescentes Verdes/metabolismo , Patrón de Herencia/genética , Internet , Datos de Secuencia Molecular , Mutación/genética , Raíces de Plantas/genética , Reacción en Cadena de la Polimerasa , Transgenes/genética
5.
Stem Cells ; 29(11): 1717-26, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21898685

RESUMEN

The combination of induced pluripotent stem cell (iPSC) technology and targeted gene modification by homologous recombination (HR) represents a promising new approach to generate genetically corrected, patient-derived cells that could be used for autologous transplantation therapies. This strategy has several potential advantages over conventional gene therapy including eliminating the need for immunosuppression, avoiding the risk of insertional mutagenesis by therapeutic vectors, and maintaining expression of the corrected gene by endogenous control elements rather than a constitutive promoter. However, gene targeting in human pluripotent cells has remained challenging and inefficient. Recently, engineered zinc finger nucleases (ZFNs) have been shown to substantially increase HR frequencies in human iPSCs, raising the prospect of using this technology to correct disease causing mutations. Here, we describe the generation of iPSC lines from sickle cell anemia patients and in situ correction of the disease causing mutation using three ZFN pairs made by the publicly available oligomerized pool engineering method (OPEN). Gene-corrected cells retained full pluripotency and a normal karyotype following removal of reprogramming factor and drug-resistance genes. By testing various conditions, we also demonstrated that HR events in human iPSCs can occur as far as 82 bps from a ZFN-induced break. Our approach delineates a roadmap for using ZFNs made by an open-source method to achieve efficient, transgene-free correction of monogenic disease mutations in patient-derived iPSCs. Our results provide an important proof of principle that ZFNs can be used to produce gene-corrected human iPSCs that could be used for therapeutic applications.


Asunto(s)
Anemia de Células Falciformes/terapia , Endonucleasas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Anemia de Células Falciformes/genética , Células Cultivadas , Endonucleasas/genética , Marcación de Gen/métodos , Terapia Genética/métodos , Humanos , Cariotipificación , Dedos de Zinc/genética , Dedos de Zinc/fisiología , Globinas beta/genética , Globinas beta/metabolismo
6.
BMC Bioinformatics ; 11: 543, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-21044337

RESUMEN

BACKGROUND: Precise and efficient methods for gene targeting are critical for detailed functional analysis of genomes and regulatory networks and for potentially improving the efficacy and safety of gene therapies. Oligomerized Pool ENgineering (OPEN) is a recently developed method for engineering C2H2 zinc finger proteins (ZFPs) designed to bind specific DNA sequences with high affinity and specificity in vivo. Because generation of ZFPs using OPEN requires considerable effort, a computational method for identifying the sites in any given gene that are most likely to be successfully targeted by this method is desirable. RESULTS: Analysis of the base composition of experimentally validated ZFP target sites identified important constraints on the DNA sequence space that can be effectively targeted using OPEN. Using alternate encodings to represent ZFP target sites, we implemented Naïve Bayes and Support Vector Machine classifiers capable of distinguishing "active" targets, i.e., ZFP binding sites that can be targeted with a high rate of success, from those that are "inactive" or poor targets for ZFPs generated using current OPEN technologies. When evaluated using leave-one-out cross-validation on a dataset of 135 experimentally validated ZFP target sites, the best Naïve Bayes classifier, designated ZiFOpT, achieved overall accuracy of 87% and specificity+ of 90%, with an ROC AUC of 0.89. When challenged with a completely independent test set of 140 newly validated ZFP target sites, ZiFOpT performance was comparable in terms of overall accuracy (88%) and specificity+ (92%), but with reduced ROC AUC (0.77). Users can rank potentially active ZFP target sites using a confidence score derived from the posterior probability returned by ZiFOpT. CONCLUSION: ZiFOpT, a machine learning classifier trained to identify DNA sequences amenable for targeting by OPEN-generated zinc finger arrays, can guide users to target sites that are most likely to function successfully in vivo, substantially reducing the experimental effort required. ZiFOpT is freely available and incorporated in the Zinc Finger Targeter web server (http://bindr.gdcb.iastate.edu/ZiFiT).


Asunto(s)
Proteínas de Unión al ADN/química , Ingeniería de Proteínas/métodos , Dedos de Zinc , Inteligencia Artificial , Secuencia de Bases , Sitios de Unión , Proteínas de Unión al ADN/genética , Marcación de Gen , Análisis de Secuencia de ADN/métodos
7.
Nat Biotechnol ; 32(6): 569-76, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24770325

RESUMEN

Monomeric CRISPR-Cas9 nucleases are widely used for targeted genome editing but can induce unwanted off-target mutations with high frequencies. Here we describe dimeric RNA-guided FokI nucleases (RFNs) that can recognize extended sequences and edit endogenous genes with high efficiencies in human cells. RFN cleavage activity depends strictly on the binding of two guide RNAs (gRNAs) to DNA with a defined spacing and orientation substantially reducing the likelihood that a suitable target site will occur more than once in the genome and therefore improving specificities relative to wild-type Cas9 monomers. RFNs guided by a single gRNA generally induce lower levels of unwanted mutations than matched monomeric Cas9 nickases. In addition, we describe a simple method for expressing multiple gRNAs bearing any 5' end nucleotide, which gives dimeric RFNs a broad targeting range. RFNs combine the ease of RNA-based targeting with the specificity enhancement inherent to dimerization and are likely to be useful in applications that require highly precise genome editing.


Asunto(s)
Proteínas Bacterianas/química , Sistemas CRISPR-Cas , Desoxirribonucleasas de Localización Especificada Tipo II/química , Endonucleasas/química , Edición Génica/métodos , Proteínas Recombinantes de Fusión/química , Proteínas Bacterianas/genética , Proteína 9 Asociada a CRISPR , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Endonucleasas/genética , Humanos , Multimerización de Proteína , Proteínas Recombinantes de Fusión/genética , ARN Pequeño no Traducido
8.
Cell Stem Cell ; 14(6): 781-95, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24704492

RESUMEN

Although many distinct mutations in a variety of genes are known to cause Amyotrophic Lateral Sclerosis (ALS), it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Here, we have combined reprogramming and stem cell differentiation approaches with genome engineering and RNA sequencing to define the transcriptional and functional changes that are induced in human motor neurons by mutant SOD1. Mutant SOD1 protein induced a transcriptional signature indicative of increased oxidative stress, reduced mitochondrial function, altered subcellular transport, and activation of the ER stress and unfolded protein response pathways. Functional studies demonstrated that these pathways were perturbed in a manner dependent on the SOD1 mutation. Finally, interrogation of stem-cell-derived motor neurons produced from ALS patients harboring a repeat expansion in C9orf72 indicates that at least a subset of these changes are more broadly conserved in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras/metabolismo , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Humanos , Neuronas Motoras/patología , Mutación , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA