Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
FASEB J ; 36(7): e22356, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35704036

RESUMEN

The circadian clock controls the physiological function of tissues through the regulation of thousands of genes in a cell-type-specific manner. The core cellular circadian clock is a transcription-translation negative feedback loop, which can recruit epigenetic regulators to facilitate temporal control of gene expression. Histone methyltransferase, mixed lineage leukemia gene 3 (MLL3) was reported to be required for the maintenance of circadian oscillations in cultured cells. Here, we test the role of MLL3 in circadian organization in whole animals. Using mice expressing catalytically inactive MLL3, we show that MLL3 methyltransferase activity is in fact not required for circadian oscillations in vitro in a range of tissues, nor for the maintenance of circadian behavioral rhythms in vivo. In contrast to a previous report, loss of MLL3-dependent methylation did not affect the global levels of H3K4 methylation in liver, indicating substantial compensation from other methyltransferases. Furthermore, we found little evidence of genomic repositioning of H3K4me3 marks. We did, however, observe repositioning of H3K4me1 from intronic regions to intergenic regions and gene promoters; however, there were no changes in H3K4me1 mark abundance around core circadian clock genes. Output functions of the circadian clock, such as control of inflammation, were largely intact in MLL3-methyltransferase-deficient mice, although some gene-specific changes were observed, with sexually dimorphic loss of circadian regulation of specific cytokines. Taken together, these observations indicate that MLL3-directed histone methylation is not essential for core circadian clock function; however, it may influence the inflammatory response.


Asunto(s)
Relojes Circadianos , Animales , Relojes Circadianos/genética , Ritmo Circadiano , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Metilación , Ratones , Procesamiento Proteico-Postraduccional
2.
Eur Respir J ; 56(6)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32586876

RESUMEN

BACKGROUND: The circadian clock powerfully regulates inflammation and the clock protein REV-ERBα is known to play a key role as a repressor of the inflammatory response. Asthma is an inflammatory disease of the airways with a strong time of day rhythm. Airway hyper-responsiveness (AHR) is a dominant feature of asthma; however, it is not known if this is under clock control. OBJECTIVES: To determine if allergy-mediated AHR is gated by the clock protein REV-ERBα. METHODS: After exposure to the intra-nasal house dust mite (HDM) allergen challenge model at either dawn or dusk, AHR to methacholine was measured invasively in mice. MAIN RESULTS: Wild-type (WT) mice show markedly different time of day AHR responses (maximal at dusk/start of the active phase), both in vivo and ex vivo, in precision cut lung slices. Time of day effects on AHR were abolished in mice lacking the clock gene Rev-erbα, indicating that such effects on asthma response are likely to be mediated via the circadian clock. We suggest that muscarinic receptors one (Chrm 1) and three (Chrm 3) may play a role in this pathway. CONCLUSIONS: We identify a novel circuit regulating a core process in asthma, potentially involving circadian control of muscarinic receptor expression, in a REV-ERBα dependent fashion. CLINICAL IMPLICATION: These insights suggest the importance of considering the timing of drug administration in clinic trials and in clinical practice (chronotherapy).


Asunto(s)
Asma , Relojes Circadianos , Animales , Ritmo Circadiano , Inflamación , Ratones , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética
3.
Elife ; 92020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31939735

RESUMEN

Efficient mitochondrial function is required in tissues with high energy demand such as the heart, and mitochondrial dysfunction is associated with cardiovascular disease. Expression of mitochondrial proteins is tightly regulated in response to internal and external stimuli. Here we identify a novel mechanism regulating mitochondrial content and function, through BUD23-dependent ribosome generation. BUD23 was required for ribosome maturation, normal 18S/28S stoichiometry and modulated the translation of mitochondrial transcripts in human A549 cells. Deletion of Bud23 in murine cardiomyocytes reduced mitochondrial content and function, leading to severe cardiomyopathy and death. We discovered that BUD23 selectively promotes ribosomal interaction with low GC-content 5'UTRs. Taken together we identify a critical role for BUD23 in bioenergetics gene expression, by promoting efficient translation of mRNA transcripts with low 5'UTR GC content. BUD23 emerges as essential to mouse development, and to postnatal cardiac function.


Cells need to make proteins to survive, so they have protein-making machines called ribosomes. Ribosomes are themselves made out of proteins and RNA (a molecule similar to DNA), and they are assembled by other proteins that bring ribosomal components together and modify them until the ribosomes are functional.Mitochondria are compartments in the cell that are in charge of providing it with energy. To do this they require several proteins produced by the ribosomes. If not enough mitochondrial proteins are made, mitochondria cannot provide enough energy for the cell to survive.One of the proteins involved in modifying ribosomes so they are functional is called BUD23. People with certain diseases, such as Williams-Beuren syndrome, do not make enough BUD23; but it was unknown what specific effects resulted from a loss of BUD23.To answer this question, Baxter et al. first genetically removed BUD23 from human cells, and then checked what happened to protein production. They found that ribosomes in human cells with no BUD23 were different than in normal cells, and that cells without BUD23 produced different proteins, which did not always perform their roles correctly. Proteins in the mitochondria are one of the main groups affected by the absence of BUD23. To determine what effects these modified mitochondrial proteins would have in an animal, Baxter et al. genetically modified mice so that they no longer produced BUD23. These mice developed heart problems caused by their mitochondria not working correctly and being unable to provide the energy the heart cells needed, eventually leading to heart failure. Heart problems are common in people with Williams-Beuren syndrome.Many diseases arise when a person's mitochondria do not work properly, but it is often unclear why. These experiments suggest that low levels of BUD23 or faulty ribosomes may be causing mitochondria to work poorly in some of these diseases, which could lead to the development of new therapies.


Asunto(s)
Metiltransferasas , Mitocondrias , Miocitos Cardíacos/metabolismo , Ribosomas/metabolismo , Regiones no Traducidas 5'/genética , Células A549 , Animales , Composición de Base/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Embrión de Mamíferos , Femenino , Humanos , Masculino , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/citología , Mapas de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas/fisiología , Ribosomas/genética
4.
Nat Commun ; 7: 12444, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27534441

RESUMEN

Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.


Asunto(s)
Envejecimiento/genética , Pruebas Genéticas , Mutagénesis/genética , Animales , Cóclea/metabolismo , Modelos Animales de Enfermedad , Epitelio/ultraestructura , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Femenino , Audición/genética , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Linaje , Fenotipo
5.
Nat Genet ; 48(10): 1185-92, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27571260

RESUMEN

Although ribosomes are ubiquitous and essential for life, recent data indicate that monogenic causes of ribosomal dysfunction can confer a remarkable degree of specificity in terms of human disease phenotype. Box C/D small nucleolar RNAs (snoRNAs) are evolutionarily conserved non-protein-coding RNAs involved in ribosome biogenesis. Here we show that biallelic mutations in the gene SNORD118, encoding the box C/D snoRNA U8, cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts (LCC), presenting at any age from early childhood to late adulthood. These mutations affect U8 expression, processing and protein binding and thus implicate U8 as essential in cerebral vascular homeostasis.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/genética , Leucoencefalopatías/genética , Mutación , ARN Nucleolar Pequeño/genética , Adolescente , Adulto , Calcinosis/genética , Calcinosis/patología , Línea Celular , Enfermedades de los Pequeños Vasos Cerebrales/patología , Niño , Preescolar , Cromosomas Humanos Par 17 , Estudios de Cohortes , Quistes/genética , Quistes/patología , Exoma , Femenino , Ligamiento Genético , Genoma Humano , Humanos , Lactante , Leucoencefalopatías/patología , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA