Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Alcohol Depend ; 178: 492-500, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28715777

RESUMEN

Cannabis and alcohol are believed to have widespread effects on the brain. Although adolescents are at increased risk for substance use, the adolescent brain may also be particularly vulnerable to the effects of drug exposure due to its rapid maturation. Here, we examined the association between cannabis and alcohol use duration and resting-state functional connectivity in a large sample of male juvenile delinquents. The present sample was drawn from the Southwest Advanced Neuroimaging Cohort, Youth sample, and from a youth detention facility in Wisconsin. All participants were scanned at the maximum-security facilities using The Mind Research Network's 1.5T Avanto SQ Mobile MRI scanner. Information on cannabis and alcohol regular use duration was collected using self-report. Resting-state networks were computed using group independent component analysis in 201 participants. Associations with cannabis and alcohol use were assessed using Mancova analyses controlling for age, IQ, smoking and psychopathy scores in the complete case sample of 180 male juvenile delinquents. No associations between alcohol or cannabis use and network spatial maps were found. Longer cannabis use was associated with decreased low frequency power of the default mode network, the executive control networks (ECNs), and several sensory networks, and with decreased functional network connectivity. Duration of alcohol use was associated with decreased low frequency power of the right frontoparietal network, salience network, dorsal attention network, and several sensory networks. Our findings suggest that adolescent cannabis and alcohol use are associated with widespread differences in resting-state time course power spectra, which may persist even after abstinence.


Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Trastorno de Personalidad Antisocial/psicología , Encéfalo/fisiopatología , Cannabis , Adolescente , Atención , Mapeo Encefálico , Función Ejecutiva , Femenino , Humanos , Delincuencia Juvenil , Imagen por Resonancia Magnética , Masculino , Fumar Marihuana , Neuroimagen , Fumar , Wisconsin
2.
Front Neurosci ; 10: 85, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27013947

RESUMEN

Identification of functionally connected regions while at rest has been at the forefront of research focusing on understanding interactions between different brain regions. Studies have utilized a variety of approaches including seed based as well as data-driven approaches to identifying such networks. Most such techniques involve differentiating groups based on group mean measures. There has been little work focused on differences in spatial characteristics of resting fMRI data. We present a method to identify between group differences in the variability in the cluster characteristics of network regions within components estimated via independent vector analysis (IVA). IVA is a blind source separation approach shown to perform well in capturing individual subject variability within a group model. We evaluate performance of the approach using simulations and then apply to a relatively large schizophrenia data set (82 schizophrenia patients and 89 healthy controls). We postulate, that group differences in the intra-network distributional characteristics of resting state network voxel intensities might indirectly capture important distinctions between the brain function of healthy and clinical populations. Results demonstrate that specific areas of the brain, superior, and middle temporal gyrus that are involved in language and recognition of emotions, show greater component level variance in amplitude weights for schizophrenia patients than healthy controls. Statistically significant correlation between component level spatial variance and component volume was observed in 19 of the 27 non-artifactual components implying an evident relationship between the two parameters. Additionally, the greater spread in the distance of the cluster peak of a component from the centroid in schizophrenia patients compared to healthy controls was observed for seven components. These results indicate that there is hidden potential in exploring variance and possibly higher-order measures in resting state networks to better understand diseases such as schizophrenia. It furthers comprehension of how spatial characteristics can highlight previously unexplored differences between populations such as schizophrenia patients and healthy controls.

3.
Schizophr Bull ; 42(1): 152-60, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26106217

RESUMEN

Spatial variability in resting functional MRI (fMRI) brain networks has not been well studied in schizophrenia, a disease known for both neurodevelopmental and widespread anatomic changes. Motivated by abundant evidence of neuroanatomical variability from previous studies of schizophrenia, we draw upon a relatively new approach called independent vector analysis (IVA) to assess this variability in resting fMRI networks. IVA is a blind-source separation algorithm, which segregates fMRI data into temporally coherent but spatially independent networks and has been shown to be especially good at capturing spatial variability among subjects in the extracted networks. We introduce several new ways to quantify differences in variability of IVA-derived networks between schizophrenia patients (SZs = 82) and healthy controls (HCs = 89). Voxelwise amplitude analyses showed significant group differences in the spatial maps of auditory cortex, the basal ganglia, the sensorimotor network, and visual cortex. Tests for differences (HC-SZ) in the spatial variability maps suggest, that at rest, SZs exhibit more activity within externally focused sensory and integrative network and less activity in the default mode network thought to be related to internal reflection. Additionally, tests for difference of variance between groups further emphasize that SZs exhibit greater network variability. These results, consistent with our prediction of increased spatial variability within SZs, enhance our understanding of the disease and suggest that it is not just the amplitude of connectivity that is different in schizophrenia, but also the consistency in spatial connectivity patterns across subjects.


Asunto(s)
Encéfalo/fisiopatología , Trastornos Psicóticos/fisiopatología , Esquizofrenia/fisiopatología , Adolescente , Adulto , Anciano , Algoritmos , Corteza Auditiva/fisiopatología , Ganglios Basales/fisiopatología , Mapeo Encefálico , Estudios de Casos y Controles , Femenino , Neuroimagen Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Corteza Sensoriomotora/fisiopatología , Corteza Visual/fisiopatología , Adulto Joven
4.
Front Psychiatry ; 4: 10, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23459749

RESUMEN

Major depressive disorder (MDD) is associated with increased functional connectivity in specific neural networks. Electroconvulsive therapy (ECT), the gold-standard treatment for acute, treatment-resistant MDD, but temporal dependencies between networks associated with ECT response have yet to be investigated. In the present longitudinal, case-control investigation, we used independent component analysis to identify distinct networks of brain regions with temporally coherent hemodynamic signal change and functional network connectivity (FNC) to assess component time course correlations across these networks. MDD subjects completed imaging and clinical assessments immediately prior to the ECT series and a minimum of 5 days after the last ECT treatment. We focused our analysis on four networks affected in MDD: the subcallosal cingulate gyrus, default mode, dorsal lateral prefrontal cortex, and dorsal medial prefrontal cortex (DMPFC). In an older sample of ECT subjects (n = 12) with MDD, remission associated with the ECT series reverses the relationship from negative to positive between the posterior default mode (p_DM) and two other networks: the DMPFC and left dorsal lateral prefrontal cortex (l_DLPFC). Relative to demographically healthy subjects (n = 12), the FNC between the p_DM areas and the DMPFC normalizes with ECT response. The FNC changes following treatment did not correlate with symptom improvement; however, a direct comparison between ECT remitters and non-remitters showed the pattern of increased FNC between the p_DM and l_DLPFC following ECT to be specific to those who responded to the treatment. The differences between ECT remitters and non-remitters suggest that this increased FNC between p_DM areas and the left dorsolateral prefrontal cortex is a neural correlate and potential biomarker of recovery from a depressed episode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA