Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 265(Pt 1): 130746, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467219

RESUMEN

The burgeoning field of starch-based nanomaterials in biomedical applications has perceived notable progressions, with a particular emphasis on their pivotal role in precision drug delivery and the inhibition of tumor growth. The complicated challenges in current biomedical research require innovative approaches for improved therapeutic outcomes, prompting an exploration into the possible of starch-based nanomaterials. The conceptualization of this review emerged from recognizing the need for a comprehensive examination of the structural attributes, versatile properties, and mechanisms underlying the efficiency of starch-based nanomaterials in inhibiting tumor growth and enabling targeted drug delivery. This review delineates the substantial growth in utilizing starch-based nanomaterials, elucidating their small size, high surface-volume ratio, and biocompatibility, predominantly emphasizing their possible to actively recognize cancer cells, deliver anticancer drugs, and combat tumors efficiently. The investigation of these nanomaterials encompasses to improving biocompatibility and targeting specific tissues, thereby contributing to the evolving landscape of precision medicine. The review accomplishes by highlighting the auspicious strategies and modern developments in the field, envisioning a future where starch-based nanomaterials play a transformative role in molecular nanomaterials, evolving biomedical sciences. The translation of these advancements into clinical applications holds the potential to revolutionize targeted drug delivery and expand therapeutic outcomes in the realm of precision medicine.


Asunto(s)
Antineoplásicos , Nanoestructuras , Neoplasias , Humanos , Nanoestructuras/química , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Medicina de Precisión
2.
Theranostics ; 13(12): 4138-4165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554286

RESUMEN

Neurodegenerative diseases are characterized by the progressive loss of neurons and intricate interactions between different cell types within the affected regions. Reliable biomarkers that can accurately reflect disease activity, diagnose, and monitor the progression of neurodegenerative diseases are crucial for the development of effective therapies. However, identifying suitable biomarkers has been challenging due to the heterogeneous nature of these diseases, affecting specific subsets of neurons in different brain regions. One promising approach for promoting brain regeneration and recovery involves the transplantation of mesenchymal stem cells (MSCs). MSCs have demonstrated the ability to modulate the immune system, promote neurite outgrowth, stimulate angiogenesis, and repair damaged tissues, partially through the release of their extracellular vesicles (EVs). MSC-derived EVs retain some of the therapeutic characteristics of their parent MSCs, including their ability to regulate neurite outgrowth, promote angiogenesis, and facilitate tissue repair. This review aims to explore the potential of MSC-derived EVs as an emerging therapeutic strategy for neurodegenerative diseases, highlighting their role in modulating disease progression and promoting neuronal recovery. By elucidating the mechanisms by which MSC-derived EVs exert their therapeutic effects, we can advance our understanding and leverage their potential for the development of novel treatment approaches in the field of neurodegenerative diseases.


Asunto(s)
Vesículas Extracelulares , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/metabolismo , Vesículas Extracelulares/metabolismo , Encéfalo , Células Madre Mesenquimatosas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA