Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(14): e2313305121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38527195

RESUMEN

Aquatic locomotion is challenging for land-dwelling creatures because of the high degree of fluidity with which the water yields to loads. We surprisingly found that the Chinese rice grasshopper Oxya chinensis, known for its terrestrial acrobatics, could swiftly launch itself off the water's surface in around 25 ms and seamlessly transition into flight. Biological observations showed that jumping grasshoppers use their front and middle legs to tilt up bodies first and then lift off by propelling the water toward the lower back with hind legs at angular speeds of up to 18°/ms, whereas the swimming grasshoppers swing their front and middle legs in nearly horizontal planes and move hind legs less violently (~8°/ms). Force measurement and model analysis indicated that the weight support could be achieved by hydrostatics which are proportionate to the mass of the grasshoppers, while the propulsions for motion are derived from the controlled limb-water interactions (i.e., the hydrodynamics). After learning the structural and behavioral strategies of the grasshoppers, a robot was created and was capable of swimming and jumping on the water surface like the insects, further demonstrating the effectiveness of decoupling the challenges of aquatic locomotion by the combined use of the static and dynamic hydro forces. This work not only uncovered the combined mechanisms responsible for facilitating aquatic acrobatics in this species but also laid a foundation for developing bioinspired robots that can locomote across multiple media.


Asunto(s)
Saltamontes , Robótica , Animales , Locomoción , Insectos , Agua , Fenómenos Biomecánicos
2.
Proc Natl Acad Sci U S A ; 120(30): e2305436120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459520

RESUMEN

The feeding mechanisms of animals constrain the spectrum of resources that they can exploit profitably. For floral nectar eaters, both corolla depth and nectar properties have marked influence on foraging choices. We report the multiple strategies used by honey bees to efficiently extract nectar at the range of sugar concentrations and corolla depths they face in nature. Honey bees can collect nectar by dipping their hairy tongues or capillary loading when lapping it, or they can attach the tongue to the wall of long corollas and directly suck the nectar along the tongue sides. The honey bee feeding apparatus is unveiled as a multifunctional tool that can switch between lapping and sucking nectar according to the instantaneous ingesting efficiency, which is determined by the interplay of nectar-mouth distance and sugar concentration. These versatile feeding mechanisms allow honey bees to extract nectar efficiently from a wider range of floral resources than previously appreciated and endow them with remarkable adaptability to diverse foraging environments.


Asunto(s)
Boca , Néctar de las Plantas , Abejas , Animales , Lengua , Carbohidratos , Azúcares
3.
Proc Natl Acad Sci U S A ; 119(25): e2200198119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35704763

RESUMEN

Benthic foraminifera are unicellular eukaryotes that inhabit sediments of aquatic environments. Several foraminifera of the order Rotaliida are known to store and use nitrate for denitrification, a unique energy metabolism among eukaryotes. The rotaliid Globobulimina spp. has been shown to encode an incomplete denitrification pathway of bacterial origin. However, the prevalence of denitrification genes in foraminifera remains unknown, and the missing denitrification pathway components are elusive. Analyzing transcriptomes and metagenomes of 10 foraminiferal species from the Peruvian oxygen minimum zone, we show that denitrification genes are highly conserved in foraminifera. We infer the last common ancestor of denitrifying foraminifera, which enables us to predict the ability to denitrify for additional foraminiferal species. Additionally, an examination of the foraminiferal microbiota reveals evidence for a stable interaction with Desulfobacteraceae, which harbor genes that complement the foraminiferal denitrification pathway. Our results provide evidence that foraminiferal denitrification is complemented by the foraminifera-associated microbiome. The interaction of foraminifera with their resident bacteria is at the basis of foraminiferal adaptation to anaerobic environments that manifested in ecological success in oxygen depleted habitats.


Asunto(s)
Bacterias , Foraminíferos , Interacciones Microbiota-Huesped , Bacterias/genética , Bacterias/metabolismo , Desnitrificación/genética , Eucariontes/metabolismo , Foraminíferos/genética , Foraminíferos/metabolismo , Nitratos/metabolismo , Oxígeno/metabolismo
4.
J Exp Biol ; 227(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38726554

RESUMEN

Secure landing is indispensable for both leaping animals and robotics. Tree frogs, renowned for their adhesive capabilities, can effectively jump across intricate 3D terrain and land safely. Compared with jumping, the mechanisms underlying their landing technique, particularly in arboreal environments, have remained largely unknown. In this study, we focused on the landing patterns of the tree frog Polypedates dennysi on horizontally placed perches, explicitly emphasizing the influence of perch diameters. Tree frogs demonstrated diverse landing postures, including the utilization of: (1) single front foot, (2) double front feet, (3) anterior bellies, (4) middle bellies, (5) posterior bellies, (6) single hind foot, or (5) double hind feet. Generally, tree frogs favoured bellies on slimmer targets but double front feet on large perches. Analysis of limb-trunk relationships revealed their adaptability to modify postures, including body positions and limb orientations, for successful landing. The variations in the initial landing postures affected the subsequent landing procedures and, consequently, the dynamics. As the initial contact position switched from front foot back to the hind foot, the stabilization time decreased at first, reaching a minimum in middle belly landings, and then increased again. The maximum vertical forces showed an inverse trend, whereas the maximum fore-aft forces continuously increased as the initial contact position switched. As the perch diameter increased, the time expended dropped, whereas the maximum impact force increased. These findings not only add to our understanding of frog landings but also highlight the necessity of considering perch diameters and landing styles when studying the biomechanics of arboreal locomotion.


Asunto(s)
Anuros , Locomoción , Animales , Anuros/fisiología , Fenómenos Biomecánicos , Locomoción/fisiología , Postura
5.
J Exp Biol ; 227(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38018408

RESUMEN

The most effective way to avoid intense inter- and intra-specific competition at the dung source, and to increase the distance to the other competitors, is to follow a single straight bearing. While ball-rolling dung beetles manage to roll their dung balls along nearly perfect straight paths when traversing flat terrain, the paths that they take when traversing more complex (natural) terrain are not well understood. In this study, we investigate the effect of complex surface topographies on the ball-rolling ability of Kheper lamarcki. Our results reveal that ball-rolling trajectories are strongly influenced by the characteristic scale of the surface structure. Surfaces with an increasing similarity between the average distance of elevations and the ball radius cause progressively more difficulties during ball transportation. The most important factor causing difficulties in ball transportation appears to be the slope of the substrate. Our results show that, on surfaces with a slope of 7.5 deg, more than 60% of the dung beetles lose control of their ball. Although dung beetles still successfully roll their dung ball against the slope on such inclinations, their ability to roll the dung ball sideways diminishes. However, dung beetles do not seem to adapt their path on inclines such that they roll their ball in the direction against the slope. We conclude that dung beetles strive for a straight trajectory away from the dung pile, and that their actual path is the result of adaptations to particular surface topographies.


Asunto(s)
Conducta Animal , Escarabajos , Animales , Señales (Psicología) , Heces , Extremidad Superior
6.
Artículo en Inglés | MEDLINE | ID: mdl-38639738

RESUMEN

A novel strain, MA3_2.13T, was isolated from deep-sea sediment of Madeira Archipelago, Portugal, and characterized using a polyphasic approach. This strain produced dark brown soluble pigments, bronwish black substrate mycelia and an aerial mycelium with yellowish white spores, when grown on GYM 50SW agar. The main respiratory quinones were MK-10(H4), MK-10(H6) and MK-10(H8). Diphosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids and two glycophospholipids were identified as the main phospholipids. The major cellular fatty acids were iso-C16 : 1, iso-C16 : 0, anteiso-C17 : 1 and anteiso-C17 : 0. Phylogenetic analyses based on 16S rRNA gene showed that strain MA3_2.13T is a member of the genus Streptomyces and was most closely related to Streptomyces triticirhizae NEAU-YY642T (NR_180032.1; 16S rRNA gene similarity 97.9 %), Streptomyces sedi YIM 65188T (NR_044582.1; 16S rRNA gene similarity 97.4 %), Streptomyces mimosae 3MP-10T (NR_170412.1; 16S rRNA gene similarity 97.3 %) and Streptomyces zhaozhouensis NEAU-LZS-5T (NR_133874.1; 16S rRNA gene similarity 97.0 %). Genome pairwise comparisons with closest related type strains retrieved values below the threshold for species delineation suggesting that strain MA3_2.13T represents a new branch within the genus Streptomyces. Based on these results, strain MA3_2.13T (=DSM 115980T=LMG 33094T) is proposed as the type strain of a novel species of the genus Streptomyces, for which the name Streptomyces profundus sp. nov. is proposed.


Asunto(s)
Ácidos Grasos , Streptomyces , Ácidos Grasos/química , Análisis de Secuencia de ADN , Filogenia , ARN Ribosómico 16S/genética , Portugal , Microbiología del Suelo , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Fosfolípidos/química
7.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34911759

RESUMEN

Chiral asymmetry is important in a wide variety of disciplines and occurs across length scales. While several natural chiral biomolecules exist only with single handedness, they can produce complex hierarchical structures with opposite chiralities. Understanding how the handedness is transferred from molecular to the macroscopic scales is far from trivial. An intriguing example is the transfer of the handedness of helicoidal organizations of cellulose microfibrils in plant cell walls. These cellulose helicoids produce structural colors if their dimension is comparable to the wavelength of visible light. All previously reported examples of a helicoidal structure in plants are left-handed except, remarkably, in the Pollia condensata fruit; both left- and right-handed helicoidal cell walls are found in neighboring cells of the same tissue. By simultaneously studying optical and mechanical responses of cells with different handednesses, we propose that the chirality of helicoids results from differences in cell wall composition. In detail, here we showed statistical substantiation of three different observations: 1) light reflected from right-handed cells is red shifted compared to light reflected from left-handed cells, 2) right-handed cells occur more rarely than left-handed ones, and 3) right-handed cells are located mainly in regions corresponding to interlocular divisions. Finally, 4) right-handed cells have an average lower elastic modulus compared to left-handed cells of the same color. Our findings, combined with mechanical simulation, suggest that the different chiralities of helicoids in the cell wall may result from different chemical composition, which strengthens previous hypotheses that hemicellulose might mediate the rotations of cellulose microfibrils.


Asunto(s)
Pared Celular/química , Commelinaceae/química , Frutas/química , Pared Celular/ultraestructura , Celulosa/química , Color , Módulo de Elasticidad , Microfibrillas/química , Polisacáridos/química
8.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612836

RESUMEN

One of the most important medical interventions for individuals with heart valvular disease is heart valve replacement, which is not without substantial challenges, particularly for pediatric patients. Due to their biological properties and biocompatibility, natural tissue-originated scaffolds derived from human or animal sources are one type of scaffold that is widely used in tissue engineering. However, they are known for their high potential for immunogenicity. Being free of cells and genetic material, decellularized xenografts, consequently, have low immunogenicity and, thus, are expected to be tolerated by the recipient's immune system. The scaffold ultrastructure and ECM composition can be affected by cell removal agents. Therefore, applying an appropriate method that preserves intact the structure of the ECM plays a critical role in the final result. So far, there has not been an effective decellularization technique that preserves the integrity of the heart valve's ultrastructure while securing the least amount of genetic material left. This study demonstrates a new protocol with untraceable cells and residual DNA, thereby maximally reducing any chance of immunogenicity. The mechanical and biochemical properties of the ECM resemble those of native heart valves. Results from this study strongly indicate that different critical factors, such as ionic detergent omission, the substitution of Triton X-100 with Tergitol, and using a lower concentration of trypsin and a higher concentration of DNase and RNase, play a significant role in maintaining intact the ultrastructure and function of the ECM.


Asunto(s)
Bioprótesis , Prótesis Valvulares Cardíacas , Animales , Porcinos , Humanos , Niño , Xenoinjertos , Trasplante Heterólogo , Ingeniería de Tejidos
9.
Entropy (Basel) ; 26(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38785629

RESUMEN

The goal of the research is to describe the aggregation process inside the mucilage produced by plant seeds using molecular dynamics (MD) combined with time series algorithmic analysis based on the recurrence plots. The studied biological molecules model is seed mucilage composed of three main polysaccharides, i.e. pectins, hemicellulose, and cellulose. The modeling of biological molecules is based on the assumption that a classical-quantum passage underlies the aggregation process in the mucilage, resulting from non-covalent interactions, as they affect the macroscopic properties of the system. The applied recurrence plot approach is an important tool for time series analysis and data mining dedicated to analyzing time series data originating from complex, chaotic systems. In the current research, we demonstrated that advanced algorithmic analysis of seed mucilage data can reveal some features of the dynamics of the system, namely temperature-dependent regions with different dynamics of increments of a number of hydrogen bonds and regions of stable oscillation of increments of a number of hydrophobic-polar interactions. Henceforth, we pave the path for automatic data-mining methods for the analysis of biological molecules with the intermediate step of the application of recurrence plot analysis, as the generalization of recurrence plot applications to other (biological molecules) datasets is straightforward.

10.
Small ; 19(22): e2206085, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36707414

RESUMEN

A higher relative humidity leads to an increased sticking power of gecko feet to surfaces. The molecular mechanism responsible for this increase, however, is not clear. Capillary forces, water mediating keratin-surface contacts and water-induced softening of the keratin are proposed as candidates. In previous work, strong evidence for water mediation is found but indirect effects via increased flexibility are not completely ruled out. This article studies the latter hypothesis by a bottom-up coarse-grained mesoscale model of an entire gecko spatula designed without explicit water particles, so that capillary action and water-mediation are excluded. The elasticity of this model is adjusted with a deep neural network to atomistic elastic constants, including water at different concentrations. Our results show clearly that on nanoscopic flat surfaces, the softening of keratin by water uptake cannot nearly account for the experimentally observed increase in gecko sticking power. Here, the dominant mechanism is the mediation of keratin-surface contacts by intervening water molecules. This mechanism remains important on nanostructured surfaces. Here, however, a water-induced increase of the keratin flexibility may enable the spatula to follow surface features smaller than itself and thereby increase the number of contacts with the surface. This leads to an appreciable but not dominant contribution to the humidity-increased adhesion. Recently, by atomistic grand-canonical molecular dynamics simulation, the room-temperature isotherm is obtained for the sorption of water into gecko keratin, to the authors' knowledge, the first such relation for any beta-keratin. In this work, it relates the equilibrium water content of the keratin to the ambient relative humidity.

11.
Artículo en Inglés | MEDLINE | ID: mdl-36152036

RESUMEN

Insect attachment devices and capabilities have been subject to research efforts for decades, and even though during that time considerable progress has been made, numerous questions remain. Different types of attachment devices are known, alongside most of their working principles, however, some details have yet to be understood. For instance, it is not clear why insects for the most part developed pairs of claws, instead of either three or a single one. In this paper, we investigated the gripping forces generated by the stick insect Sungaya inexpectata, in dependence on the number of available claws. The gripping force experiments were carried out on multiple, standardized substrates of known roughness, and conducted in directions both perpendicular and parallel to the substrate. This was repeated two times: first with a single claw being amputated from each of the animals' legs, then with both claws removed, prior to the measurement. The adhesive pads (arolia) and frictional pads (euplantulae) remained intact. It was discovered that the removal of claws had a detractive effect on the gripping forces in both directions, and on all substrates. Notably, this also included the control of smooth surfaces on which the claws were unable to find any asperities to grip on. The results show that there is a direct connection between the adhesive performance of the distal adhesive pad (arolium) and the presence of intact claws. These observations show collective effects between different attachment devices that work in concert during locomotion, and grant insight into why most insects possess two claws.


Asunto(s)
Insectos , Locomoción , Animales , Fenómenos Biomecánicos , Insectos/fisiología , Locomoción/fisiología , Fricción , Extremidades/fisiología
12.
Front Zool ; 20(1): 37, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037029

RESUMEN

Suckermouth armoured catfish (Loricariidae) are a highly speciose and diverse freshwater fish family, which bear upper and lower lips forming an oral disc. Its hierarchical organisation allows the attachment to various natural surfaces. The discs can possess papillae of different shapes, which are supplemented, in many taxa, by small horny projections, i.e. unculi. Although these attachment structures and their working mechanisms, which include adhesion and interlocking, are rather well investigated in some selected species, the loricariid oral disc is unfortunately understudied in the majority of species, especially with regard to comparative aspects of the diverse oral structures and their relationship to the ecology of different species. In the present paper, we investigated the papilla and unculi morphologies in 67 loricariid species, which inhabit different currents and substrates. We determined four papilla types and eight unculi types differing by forms and sizes. Ancestral state reconstructions strongly suggest convergent evolution of traits. There is no obvious correlation between habitat shifts and the evolution of specific character states. From handling the structures and from drying artefacts we could infer some information about their material properties. This, together with their shape, enabled us to carefully propose hypotheses about mechanisms of interactions of oral disc structures with natural substrates typical for respective fish species.

13.
J Exp Biol ; 226(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36606728

RESUMEN

Stick and leaf insects (Phasmatodea) are exclusively herbivores. As they settle in a broad range of habitats, they need to attach to and walk on a wide variety of plant substrates, which can vary in their surface free energy (SFE). The adhesive microstructures (AMs) on the euplantulae of phasmids are assumed to be adapted to such substrate properties. Moreover, the natural substrates can often be covered with water as a result of high relative humidity or rain. Although considerable experimental research has been carried out on different aspects of stick insect attachment, the adaptations to cope with the influence of flooded water on attachment performance remain unclear. To elucidate the role of AMs in this context, we here measured attachment forces in three species of stick insects with different AMs. The results show that attachment forces of the three species studied were influenced by the SFE and the presence of water: they all showed higher pull-off (vertical) and traction (horizontal) forces on dry surfaces, compared with when the surfaces were covered with a water film. However, the extent to which the surface properties influenced attachment differed depending on the species and its AMs. All three species showed approximately the same attachment performance on dry surfaces with different surface free energy but maintained attachment underwater to different extents.


Asunto(s)
Adhesivos , Insectos , Animales , Fenómenos Biomecánicos , Propiedades de Superficie , Agua , Adhesividad
14.
J Exp Biol ; 226(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36896845

RESUMEN

Asteraceae, one of the largest flowering plant families, are adapted to a vast range of ecological niches. Their adaptability is partially based on their strong ability to reproduce. The initial, yet challenging, step for the reproduction of animal-pollinated plants is to transport pollen to flower-visiting pollinators. We adopted Hypochaeris radicata as a model species to investigate the functional morphology of the typical floral feature of Asteraceae, a pollen-bearing style. Using quantitative experiments and numerical simulations, here we show that the pollen-bearing style can serve as a ballistic lever for catapulting pollen grains to pollinators. This can potentially be a pollen dispersal strategy to propel pollen to safe sites on pollinators' bodies, which are beyond the physical reach of the styles. Our results suggest that the specific morphology of the floret and the pollen adhesion avoid pollen waste by catapulting pollen within a specific range equal to the size of a flowerhead. The insights into the functional floral oscillation may shed light on the superficially unremarkable, but ubiquitous functional floral design of Asteraceae.


Asunto(s)
Asteraceae , Animales , Polinización , Reproducción , Polen , Plantas , Flores
15.
J Chem Phys ; 159(18)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37955324

RESUMEN

Gastropods forage with their radula, a thin chitinous membrane with embedded teeth, which scratch across the substrate to lose food particles. During this interaction, the risk of loosening particles is obvious without having a specialized mechanism holding them on the tooth surface. As mucus secretions are essential in molluscan life cycles and the locomotion and attachment gels are known to have an instant high adhesion, we have hypothesized that the saliva could support particle retention during feeding. As adhesion of snail saliva was not studied before, we present here an experimental setup to test its particle-binding capacity using a large land snail (Lissachatina fulica, Stylommatophora, Heterobranchia). This experiment was also applied to the gels produced by the snail foot for comparison and can be potentially applied to various fluids present at a small volume in the future. We found, that the saliva has high particle retention capacity that is comparable to the foot glue of the snail. To gain some insight into the properties of the saliva, we additionally studied it in the scanning electron microscope, estimated its viscosity in a de-wetting experiment, and investigated its elemental composition using energy dispersive X-ray spectroscopy reveling higher contents of Ca, Zn and other potential cross-linkers similar to those found in the glue.


Asunto(s)
Alimentos , Saliva , Geles
16.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139185

RESUMEN

Transcatheter pulmonary valve replacement is a minimally-invasive alternative treatment for right ventricular outflow tract dysfunction and has been rapidly evolving over the past years. Heart valve prostheses currently available still have major limitations. Therefore, one of the significant challenges for the future is the roll out of transcatheter tissue engineered pulmonary valve replacement to more patients. In the present study, biodegradable poly-ε-caprolactone (PCL) nanofiber scaffolds in the form of a 3D leaflet matrix were successfully seeded with human endothelial colony-forming cells (ECFCs), human induced pluripotent stem cell-derived MSCs (hMSCs), and porcine MSCs (pMSCs) for three weeks for the generation of 3D tissue-engineered tri-leaflet valved stent grafts. The cell adhesion, proliferation, and distribution of these 3D heart leaflets was analyzed using fluorescence microscopy and scanning electron microscopy (SEM). All cell lineages were able to increase the overgrown leaflet area within the three-week timeframe. While hMSCs showed a consistent growth rate over the course of three weeks, ECFSs showed almost no increase between days 7 and 14 until a growth spurt appeared between days 14 and 21. More than 90% of heart valve leaflets were covered with cells after the full three-week culturing cycle in nearly all leaflet areas, regardless of which cell type was used. This study shows that seeded biodegradable PCL nanofiber scaffolds incorporated in nitinol or biodegradable stents will offer a new therapeutic option in the future.


Asunto(s)
Células Madre Pluripotentes Inducidas , Poliésteres , Humanos , Animales , Porcinos , Poliésteres/farmacología , Ingeniería de Tejidos , Andamios del Tejido , Stents
17.
Front Zool ; 19(1): 19, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690761

RESUMEN

BACKGROUND: The radula, a chitinous membrane with embedded teeth, is one important molluscan autapomorphy. In some taxa (Polyplacophora and Patellogastropoda) one tooth type (the dominant lateral tooth) was studied intensively in the last decades with regard to its mechanical properties, chemical and structural composition, and the relationship between these parameters. As the dominant lateral tooth is probably one of the best studied biological materials, it is surprising, that data on elements and mechanical properties of the other tooth types, present on a chiton radula, is lacking. RESULTS: We provide data on the elemental distribution and mechanical properties (hardness and elasticity, i.e. Young's modulus) of all teeth from the Polyplacophora Lepidochitona cinerea (Linnaeus, 1767) [Chitonidae: Ischnochitonidae]. The ontogeny of elements, studied by energy-dispersive X-ray spectroscopy, and of the mechanical properties, determined by nanoindentation, was analysed in every individual tooth type. Additionally, we performed breaking stress experiments with teeth under dry and wet condition, highlighting the high influence of the water content on the mechanical behaviour of the radula. We thereby could determine the forces and stresses, teeth can resist, which were previously not studied in representatives of Polyplacophora. Overall, we were able to relate the mineral (iron, calcium) content with the mechanical parameters (hardness and Young's modulus) and the breaking force and stress in every tooth type. This led to a better understanding of the relationship between structure, material, and function in radular teeth. Further, we aimed at determining the role of calcium for the mechanical behaviour of the teeth: we decalcified radulae by ethylene diamine tetra acetic acid and performed afterwards elemental analyses, breaking stress experiments, and nanoindentation. Among other things, we detected that wet and decalcified radular teeth could resist highest forces, since teeth have a higher range of bending motion leading to a higher capability of teeth to gain mechanical support from the adjacent tooth row. This indicates, that the tooth material is the result of a compromise between failure reduction and the ability to transfer forces onto the ingesta. CONCLUSION: We present novel data on the elemental composition, mechanical properties, and the mechanical behaviour of chiton teeth, which allows conclusions about tooth function. We could also relate the parameters mentioned, which contributes to our understanding on the origins of mechanical property gradients and the processes reducing structural failure in radular teeth. Additionally, we add more evidence, that the elemental composition of radular is probably species-specific and could be used as taxonomic character.

18.
Am J Bot ; 109(6): 874-886, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35608083

RESUMEN

PREMISE: For vascular epiphytes, secure attachment to their hosts is vital for survival. Yet studies detailing the adhesion mechanism of epiphytes to their substrate are scarce. Examination of the root hair-substrate interface is essential to understand the attachment mechanism of epiphytes to their substrate. This study also investigated how substrate microroughness relates to the root-substrate attachment strength and the underlying mechanism(s). METHODS: Seeds of Anthurium obtusum were germinated, and seedlings were transferred onto substrates made of epoxy resin with different defined roughness. After 2 months of growth, roots that adhered to the resin tiles were subjected to anchorage tests, and root hair morphology at different roughness levels was analyzed using light and cryo scanning electron microscopy. RESULTS: The highest maximum peeling force was recorded on the smooth surface (glass replica, 0 µm). Maximum peeling force was significantly higher on fine roughness (0, 0.3, 12 µm) than on coarse (162 µm). Root hair morphology varied according to the roughness of the substrate. On smoother surfaces, root hairs were flattened to achieve large surface contact with the substrate. Attachment was mainly by adhesion with the presence of a glue-like substance. On coarser surfaces, root hairs were tubular and conformed to spaces between the asperities on the surface. Attachment was mainly via mechanical interlocking of root hairs and substrate. CONCLUSIONS: This study demonstrates for the first time that the attachment mechanism of epiphytes varies depending on substrate microtopography, which is important for understanding epiphyte attachment on natural substrates varying in roughness.


Asunto(s)
Araceae , Plantones , Microscopía Electrónica de Rastreo
19.
Biol Lett ; 18(7): 20220093, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35857888

RESUMEN

The fascinating adhesion of gecko to virtually any material has been related to surface interactions of myriads of spatula at the tips of gecko feet. Surprisingly, the molecular details of the surface chemistry of gecko adhesion are still largely unknown. Lipids have been identified within gecko adhesive pads. However, the location of the lipids, the extent to which spatula are coated with lipids, and how the lipids are structured are still open questions. Lipids can modulate adhesion properties and surface hydrophobicity and may play an important role in adhesion. We have therefore studied the molecular structure of lipids at spatula surfaces using near-edge X-ray absorption fine structure imaging. We provide evidence that a nanometre-thin layer of lipids is present at the spatula surfaces of the tokay gecko (Gekko gecko) and that the lipids form ordered, densely packed layers. Such dense, thin lipid layers can effectively protect the spatula proteins from dehydration by forming a barrier against water evaporation. Lipids can also render surfaces hydrophobic and thereby support the gecko adhesive system by enhancement of hydrophobic-hydrophobic interactions with surfaces.


Asunto(s)
Lagartos , Sensilos , Adhesividad , Animales , Metabolismo de los Lípidos , Lípidos/química , Lagartos/metabolismo , Proteínas , Sensilos/metabolismo
20.
Naturwissenschaften ; 109(2): 24, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35377000

RESUMEN

This paper presents an experimental study on surface icing on leaves in six plant species having different surface micromorphology and wettability properties. Contrary to previous studies on ice crystallization, which have been mainly performed by using infrared video thermography, we applied a Cryo-SEM approach allowing not only characterization of plant surfaces in their native conditions but also visualization of ice crystal formation on the native plant surfaces at the micro- and nanoscales. The Cryo-SEM was also used as an experimental device to freeze water vapor, thaw ice crystals, and freeze fluid water on the plant surface again. The experiments clearly demonstrate that trichome coverage (especially with several distinct layers) and 3D wax projections can be recognized as anti-icing strategies of plants. Trichomes can prevent and delay ice formation by being nucleation points for the formation of ice from vapor and protect the plant surface from overcooling, when fluid water freezes in contact with the leaf surface. The study shows for the first time two important effects that might reduce plant cell freezing rate: the presence of air pockets between wax projections that protect from direct contact between ice crystals and the plant cuticle and elimination of fluid water after thawing and preventing further re-freezing on the surface. The detailed knowledge obtained here is not only important for plant ecology, evolution, and plant protection but also for looking for potential biomimetic strategies that reduce/avoid icing of cultural plants and artificial technical surfaces.


Asunto(s)
Hielo , Hojas de la Planta , Congelación , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA