Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 491
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(22): e2316117121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38776372

RESUMEN

We report the reliable detection of reproducible patterns of blood-oxygenation-level-dependent (BOLD) MRI signals within the white matter (WM) of the spinal cord during a task and in a resting state. Previous functional MRI studies have shown that BOLD signals are robustly detectable not only in gray matter (GM) in the brain but also in cerebral WM as well as the GM within the spinal cord, but similar signals in WM of the spinal cord have been overlooked. In this study, we detected BOLD signals in the WM of the spinal cord in squirrel monkeys and studied their relationships with the locations and functions of ascending and descending WM tracts. Tactile sensory stimulus -evoked BOLD signal changes were detected in the ascending tracts of the spinal cord using a general-linear model. Power spectral analysis confirmed that the amplitude at the fundamental frequency of the response to a periodic stimulus was significantly higher in the ascending tracts than the descending ones. Independent component analysis of resting-state signals identified coherent fluctuations from eight WM hubs which correspond closely to the known anatomical locations of the major WM tracts. Resting-state analyses showed that the WM hubs exhibited correlated signal fluctuations across spinal cord segments in reproducible patterns that correspond well with the known neurobiological functions of WM tracts in the spinal cord. Overall, these findings provide evidence of a functional organization of intraspinal WM tracts and confirm that they produce hemodynamic responses similar to GM both at baseline and under stimulus conditions.


Asunto(s)
Imagen por Resonancia Magnética , Saimiri , Médula Espinal , Sustancia Blanca , Animales , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Médula Espinal/fisiología , Médula Espinal/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Descanso/fisiología , Oxígeno/sangre , Oxígeno/metabolismo , Masculino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/fisiología , Femenino
2.
Proc Natl Acad Sci U S A ; 120(42): e2219666120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37824529

RESUMEN

Recent studies have revealed the production of time-locked blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals throughout the entire brain in response to tasks, challenging the existence of sparse and localized brain functions and highlighting the pervasiveness of potential false negative fMRI findings. "Whole-brain" actually refers to gray matter, the only tissue traditionally studied with fMRI. However, several reports have demonstrated reliable detection of BOLD signals in white matter, which have previously been largely ignored. Using simple tasks and analyses, we demonstrate BOLD signal changes across the whole brain, in both white and gray matters, in similar manner to previous reports of whole brain studies. We investigated whether white matter displays time-locked BOLD signals across multiple structural pathways in response to a stimulus in a similar manner to the cortex. We find that both white and gray matter show time-locked activations across the whole brain, with a majority of both tissue types showing statistically significant signal changes for all task stimuli investigated. We observed a wide range of signal responses to tasks, with different regions showing different BOLD signal changes to the same task. Moreover, we find that each region may display different BOLD responses to different stimuli. Overall, we present compelling evidence that, just like all gray matter, essentially all white matter in the brain shows time-locked BOLD signal changes in response to multiple stimuli, challenging the idea of sparse functional localization and the prevailing wisdom of treating white matter BOLD signals as artifacts to be removed.


Asunto(s)
Sustancia Blanca , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/fisiología , Imagen por Resonancia Magnética
3.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517178

RESUMEN

Cognitive decline with aging involves multifactorial processes, including changes in brain structure and function. This study focuses on the role of white matter functional characteristics, as reflected in blood oxygenation level-dependent signals, in age-related cognitive deterioration. Building on previous research confirming the reproducibility and age-dependence of blood oxygenation level-dependent signals acquired via functional magnetic resonance imaging, we here employ mediation analysis to test if aging affects cognition through white matter blood oxygenation level-dependent signal changes, impacting various cognitive domains and specific white matter regions. We used independent component analysis of resting-state blood oxygenation level-dependent signals to segment white matter into coherent hubs, offering a data-driven view of white matter's functional architecture. Through correlation analysis, we constructed a graph network and derived metrics to quantitatively assess regional functional properties based on resting-state blood oxygenation level-dependent fluctuations. Our analysis identified significant mediators in the age-cognition relationship, indicating that aging differentially influences cognitive functions by altering the functional characteristics of distinct white matter regions. These findings enhance our understanding of the neurobiological basis of cognitive aging, highlighting the critical role of white matter in maintaining cognitive integrity and proposing new approaches to assess interventions targeting cognitive decline in older populations.


Asunto(s)
Disfunción Cognitiva , Sustancia Blanca , Humanos , Anciano , Sustancia Blanca/diagnóstico por imagen , Reproducibilidad de los Resultados , Mapeo Encefálico , Envejecimiento , Encéfalo/diagnóstico por imagen , Cognición , Imagen por Resonancia Magnética , Disfunción Cognitiva/diagnóstico por imagen
4.
J Magn Reson Imaging ; 59(2): 575-584, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37218596

RESUMEN

BACKGROUND: Breast cancer treatment response evaluation using the response evaluation criteria in solid tumors (RECIST) guidelines, based on tumor volume changes, has limitations, prompting interest in novel imaging markers for accurate therapeutic effect determination. PURPOSE: To use MRI-measured cell size as a new imaging biomarker for assessing chemotherapy response in breast cancer. STUDY TYPE: Longitudinal; animal model. STUDY POPULATION: Triple-negative human breast cancer cell (MDA-MB-231) pellets (4 groups, n = 7) treated with dimethyl sulfoxide (DMSO) or 10 nM of paclitaxel for 24, 48, and 96 hours, and 29 mice with MDA-MB-231 tumors in right hind limbs treated with paclitaxel (n = 16) or DMSO (n = 13) twice weekly for 3 weeks. FIELD STRENGTH/SEQUENCE: Oscillating gradient spin echo and pulsed gradient spin echo sequences at 4.7 T. ASSESSMENT: MDA-MB-231 cells were analyzed using flowcytometry and light microscopy to assess cell cycle phases and cell size distribution. MDA-MB-231 cell pellets were MR imaged. Mice were imaged weekly, with 9, 6, and 14 being sacrificed for histology after MRI at weeks 1, 2, and 3, respectively. Microstructural parameters of tumors/cell pellets were derived by fitting diffusion MRI data to a biophysical model. STATISTICAL TESTS: One-way ANOVA compared cell sizes and MR-derived parameters between treated and control samples. Repeated measures 2-way ANOVA with Bonferroni post-tests compared temporal changes in MR-derived parameters. A P-value <0.05 was considered statistically significant. RESULTS: In vitro experiments showed that the mean MR-derived cell sizes of paclitaxel-treated cells increased significantly with a 24-hours treatment and decreased (P = 0.06) with a 96-hour treatment. For in vivo xenograft experiments, the paclitaxel-treated tumors showed significant decreases in cell size at later weeks. MRI observations were supported by flowcytometry, light microscopy, and histology. DATA CONCLUSIONS: MR-derived cell size may characterize the cell shrinkage during treatment-induced apoptosis, and may potentially provide new insights into the assessment of therapeutic response. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 4.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Femenino , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Dimetilsulfóxido/uso terapéutico , Línea Celular Tumoral , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Imagen por Resonancia Magnética/métodos , Tamaño de la Célula
5.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34716261

RESUMEN

Accurate characterization of the time courses of blood-oxygen-level-dependent (BOLD) signal changes is crucial for the analysis and interpretation of functional MRI data. While several studies have shown that white matter (WM) exhibits distinct BOLD responses evoked by tasks, there have been no comprehensive investigations into the time courses of spontaneous signal fluctuations in WM. We measured the power spectra of the resting-state time courses in a set of regions within WM identified as showing synchronous signals using independent components analysis. In each component, a clear separation between voxels into two categories was evident, based on their power spectra: one group exhibited a single peak, and the other had an additional peak at a higher frequency. Their groupings are location specific, and their distributions reflect unique neurovascular and anatomical configurations. Importantly, the two categories of voxels differed in their engagement in functional integration, revealed by differences in the number of interregional connections based on the two categories separately. Taken together, these findings suggest WM signals are heterogeneous in nature and depend on local structural-vascular-functional associations.


Asunto(s)
Monitorización Hemodinámica/métodos , Sustancia Blanca/fisiología , Adulto , Encéfalo/fisiología , Mapeo Encefálico/métodos , Imagen de Difusión Tensora/métodos , Femenino , Hemodinámica/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Neuroquímica/métodos , Saturación de Oxígeno/fisiología , Descanso/fisiología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo
6.
J Neurosci ; 42(50): 9330-9342, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36379707

RESUMEN

Cortical reactivation and regain of interareal functional connections have been linked to the recovery of hand grasping behavior after loss of sensory inputs in primates. We investigated contributions of neurons in two hierarchically organized somatosensory areas, 3b and S2, by characterizing local field potential (LFP) and multiunit spiking activity in five states (rest, stimulus-on, sustained, stimulus-off, and induced) and interareal communication after grasping behavior of dorsal column lesioned male squirrel monkeys had mostly recovered. Compared with normal cortex, fMRI, LFP, and spiking response magnitudes to step indentations were significantly weaker. The sustained component of the spiking recovered much better than the stimulus-off response. Correlation between overall spiking and γ LFP remained strong within each recovered areas 3b and S2. The interareal correlations of γ LFP were severely disrupted, except in the resting and stimulus-on periods. Interareal correlation of spiking was disrupted in the stimulus-off period only. In summary, submodality of low threshold mechanoreceptive neurons recovered differentially in input-deprived area 3b and S2 when impaired global hand grasping behavior returned. Slow-adapting-like neurons recovered, whereas rapid-adapting-like neurons did not. Interareal communications were also severely compromised. We propose that slow-adapting-like neurons and afferents in recovered area 3b and S2 mediate recovery of impaired grasping behavior after dorsal column tract lesion.SIGNIFICANCE STATEMENT Sensory feedback is essential for execution of hand grasping behavior in primates. Reactivations of somatosensory cortices have been attributed to recovery of such behavior after loss of sensory inputs via largely unknown mechanisms. In input-deprived area 3b and S2 cortex, after hand grasping behavior mostly recovered, we found slow-adapting-like neurons were greatly recovered, whereas rapid-adapting-like neurons did not. Communications between area 3b and S2 neurons were severely compromised. We suggest that recovery of slow-adapting-like neurons in input-deprived area 3b and S2 may mediate the recovery of hand grasping behavior.


Asunto(s)
Corteza Somatosensorial , Traumatismos de la Médula Espinal , Animales , Masculino , Corteza Somatosensorial/fisiología , Tacto/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Saimiri , Comunicación
7.
Neuroimage ; 278: 120277, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37473978

RESUMEN

The effects of normal aging on functional connectivity (FC) within various brain networks of gray matter (GM) have been well-documented. However, the age effects on the networks of FC between white matter (WM) and GM, namely WM-GM FC, remains unclear. Evaluating crucial properties, such as global efficiency (GE), for a WM-GM FC network poses a challenge due to the absence of closed triangle paths which are essential for assessing network properties in traditional graph models. In this study, we propose a bipartite graph model to characterize the WM-GM FC network and quantify these challenging network properties. Leveraging this model, we assessed the WM-GM FC network properties at multiple scales across 1,462 cognitively normal subjects aged 22-96 years from three repositories (ADNI, BLSA and OASIS-3) and investigated the age effects on these properties throughout adulthood and during late adulthood (age ≥70 years). Our findings reveal that (1) heterogeneous alterations occurred in region-specific WM-GM FC over the adulthood and decline predominated during late adulthood; (2) the FC density of WM bundles engaged in memory, executive function and processing speed declined with age over adulthood, particularly in later years; and (3) the GE of attention, default, somatomotor, frontoparietal and limbic networks reduced with age over adulthood, and GE of visual network declined during late adulthood. These findings provide unpresented insights into multi-scale alterations in networks of WM-GM functional synchronizations during normal aging. Furthermore, our bipartite graph model offers an extendable framework for quantifying WM-engaged networks, which may contribute to a wide range of neuroscience research.


Asunto(s)
Sustancia Gris , Sustancia Blanca , Humanos , Adulto , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética , Envejecimiento , Encéfalo , Sustancia Blanca/diagnóstico por imagen
8.
Magn Reson Med ; 89(6): 2432-2440, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36740894

RESUMEN

PURPOSE: To quantify the variations of the power-law dependences on diffusion time t or gradient frequency f $$ f $$ of extracellular water diffusion measured by diffusion MRI (dMRI). METHODS: Model cellular systems containing only extracellular water were used to investigate the t / f $$ t/f $$ dependence of D ex $$ {D}_{ex} $$ , the extracellular diffusion coefficient. Computer simulations used a randomly packed tissue model with realistic intracellular volume fractions and cell sizes. DMRI measurements were performed on samples consisting of liposomes containing heavy water(D2 O, deuterium oxide) dispersed in regular water (H2 O). D ex $$ {D}_{ex} $$ was obtained over a broad t $$ t $$ range (∼1-1000 ms) and then fit power-law equations D ex ( t ) = D const + const · t - ϑ t $$ {D}_{ex}(t)={D}_{\mathrm{const}}+\mathrm{const}\cdotp {t}^{-{\vartheta}_t} $$ and D ex ( f ) = D const + const · f ϑ f $$ {D}_{ex}(f)={D}_{\mathrm{const}}+\mathrm{const}\cdotp {f}^{\vartheta_f} $$ . RESULTS: Both simulated and experimental results suggest that no single power-law adequately describes the behavior of D ex $$ {D}_{ex} $$ over the range of diffusion times of most interest in practical dMRI. Previous theoretical predictions are accurate over only limited t $$ t $$ ranges; for example, θ t = θ f = - 1 2 $$ {\theta}_t={\theta}_f=-\frac{1}{2} $$ is valid only for short times, whereas θ t = 1 $$ {\theta}_t=1 $$ or θ f = 3 2 $$ {\theta}_f=\frac{3}{2} $$ is valid only for long times but cannot describe other ranges simultaneously. For the specific t $$ t $$ range of 5-70 ms used in typical human dMRI measurements, θ t = θ f = 1 $$ {\theta}_t={\theta}_f=1 $$ matches the data well empirically. CONCLUSION: The optimal power-law fit of extracellular diffusion varies with diffusion time. The dependency obtained at short or long t $$ t $$ limits cannot be applied to typical dMRI measurements in human cancer or liver. It is essential to determine the appropriate diffusion time range when modeling extracellular diffusion in dMRI-based quantitative microstructural imaging.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Neoplasias , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Difusión , Modelos Biológicos , Simulación por Computador
9.
Magn Reson Med ; 89(2): 729-737, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36161670

RESUMEN

PURPOSE: To calculate temperatures from T2 *-weighted images collected during optogenetic fMRI based on proton resonance frequency (PRF) shift thermometry, to monitor confounding heating effects and determine appropriate light parameters for optogenetic stimulation. METHODS: fMRI is mainly based on long-TE gradient-recalled echo acquisitions that are also suitable for measuring small temperature changes via the PRF shift. A motion- and respiration-robust processing pipeline was developed to calculate temperature changes based on the PRF shift directly from the T2 *-weighted images collected for fMRI with a two-shot 2D gradient-recalled echo-EPI sequence at 9.4T. Optogenetic fMRI protocols which differed in stimulation durations (3, 6 and 9 s) within a total block duration of 30 s were applied in a squirrel monkey to validate the methods with blue and green light (20 Hz, 30 mW) delivery interleaved between periods. General linear modeling was performed on the resulting time series temperature maps to verify if light delivery with each protocol resulted in significant heating in the brain around the optical fiber. RESULTS: The temperature SD was 0.05°C with the proposed imaging protocol and processing. Statistical analysis showed that the optogenetic stimulation protocol with a 3 s stimulation duration did not result in significant temperature rises. Significant temperature rises up to 0.13°C (p < 0. 05) were observed with 6 and 9 s stimulation durations for blue and green light. CONCLUSION: The proposed processing pipeline can be useful for the design of optogenetic stimulation protocols and for monitoring confounding heating effects.


Asunto(s)
Imagen por Resonancia Magnética , Optogenética , Imagen por Resonancia Magnética/métodos , Calefacción , Encéfalo/diagnóstico por imagen , Protones , Rayos Láser , Fantasmas de Imagen
10.
Magn Reson Med ; 90(3): 852-862, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37154389

RESUMEN

PURPOSE: The need to detect and quantify brain lactate accurately by MRS has stimulated the development of editing sequences based on J coupling effects. In J-difference editing of lactate, threonine can be co-edited and it contaminates lactate estimates due to the spectral proximity of the coupling partners of their methyl protons. We therefore implemented narrow-band editing 180° pulses (E180) in MEGA-PRESS acquisitions to resolve separately the 1.3-ppm resonances of lactate and threonine. METHODS: Two 45.3-ms rectangular E180 pulses, which had negligible effects 0.15-ppm away from the carrier frequency, were implemented in a MEGA-PRESS sequence with TE 139 ms. Three acquisitions were designed to selectively edit lactate and threonine, in which the E180 pulses were tuned to 4.1 ppm, 4.25 ppm, and a frequency far off resonance. Editing performance was validated with numerical analyses and acquisitions from phantoms. The narrow-band E180 MEGA and another MEGA-PRESS sequence with broad-band E180 pulses were evaluated in six healthy subjects. RESULTS: The 45.3-ms E180 MEGA offered a difference-edited lactate signal with lower intensity and reduced contamination from threonine compared to the broad-band E180 MEGA. The 45.3 ms E180 pulse had MEGA editing effects over a frequency range larger than seen in the singlet-resonance inversion profile. Lactate and threonine in healthy brain were both estimated to be 0.4 ± 0.1 mM, with reference to N-acetylaspartate at 12 mM. CONCLUSION: Narrow-band E180 MEGA editing minimizes threonine contamination of lactate spectra and may improve the ability to detect modest changes in lactate levels.


Asunto(s)
Encéfalo , Ácido Láctico , Humanos , Ácido Láctico/análisis , Espectroscopía de Resonancia Magnética , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen , Treonina
11.
Magn Reson Med ; 90(3): 1151-1165, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37093746

RESUMEN

PURPOSE: We aimed to compare multiple MRI parameters, including relaxation rates ( R 1 $$ {R}_1 $$ , R 2 $$ {R}_2 $$ , and R 1 ρ $$ {R}_{1\rho } $$ ), ADC from diffusion weighted imaging, pool size ratio (PSR) from quantitative magnetization transfer, and measures of exchange from spin-lock imaging ( S ρ $$ {S}_{\rho } $$ ), for assessing and predicting the severity of polycystic kidney disease (PKD) over time. METHODS: Pcy/Pcy mice with CD1 strain, a mouse model of autosomal dominant PKD, were imaged at 5, 9, and 26 wk of age using a 7T MRI system. Twelve-week normal CD1 mice were used as controls. Post-mortem paraffin tissue sections were stained using hematoxylin and eosin and picrosirius red to identify histological changes. RESULTS: Histology detected segmental cyst formation in the early stage (week 5) and progression of PKD over time in Pcy kidneys. In T 2 $$ {T}_2 $$ -weighted images, small cysts appeared locally in cystic kidneys in week 5 and gradually extended to the whole cortex and outer stripe of outer medulla region from week 5 to week 26. Regional PSR, R 1 $$ {R}_1 $$ , R 2 $$ {R}_2 $$ , and R 1 ρ $$ {R}_{1\rho } $$ decreased consistently over time compared to normal kidneys, with significant changes detected in week 5. Among all the MRI measures, R 2 $$ {R}_2 $$ and R 1 ρ $$ {R}_{1\rho } $$ allow highest detectability to PKD, while PSR and R 1 $$ {R}_1 $$ have highest correlation with pathological indices of PKD. Using optimum MRI parameters as regressors, multiple linear regression provides reliable prediction of PKD progression. CONCLUSION: R 2 $$ {R}_2 $$ , R 1 $$ {R}_1 $$ , and PSR are sensitive indicators of the presence of PKD. Multiparametric MRI allows a comprehensive analysis of renal changes caused by cyst formation and expansion.


Asunto(s)
Quistes , Imágenes de Resonancia Magnética Multiparamétrica , Enfermedades Renales Poliquísticas , Ratones , Animales , Enfermedades Renales Poliquísticas/diagnóstico por imagen , Enfermedades Renales Poliquísticas/patología , Riñón/diagnóstico por imagen , Riñón/patología , Imagen por Resonancia Magnética , Quistes/patología , Modelos Animales de Enfermedad
12.
NMR Biomed ; : e4951, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37070215

RESUMEN

Relaxation rates R1ρ in the rotating frame measured by spin-lock methods at very low locking amplitudes (≤ 100 Hz) are sensitive to the effects of water diffusion in intrinsic gradients and may provide information on tissue microvasculature, but accurate estimates are challenging in the presence of B0 and B1 inhomogeneities. Although composite pulse preparations have been developed to compensate for nonuniform fields, the transverse magnetization comprises different components and the spin-lock signals measured do not decay exponentially as a function of locking interval at low locking amplitudes. For example, during a typical preparation sequence, some of the magnetization in the transverse plane is nutated to the Z-axis and later tipped back, and so does not experience R1ρ relaxation. As a result, if the spin-lock signals are fit to a monoexponential decay with locking interval, there are residual errors in quantitative estimates of relaxation rates R1ρ and their dispersion with weak locking fields. We developed an approximate theoretical analysis to model the behaviors of the different components of the magnetization, which provides a means to correct these errors. The performance of this correction approach was evaluated both through numerical simulations and on human brain images at 3 T, and compared with a previous correction method using matrix multiplication. Our correction approach has better performance than the previous method at low locking amplitudes. Through careful shimming, the correction approach can be applied in studies using low spin-lock amplitudes to assess the contribution of diffusion to R1ρ dispersion and to derive estimates of microvascular sizes and spacings. The results of imaging eight healthy subjects suggest that R1ρ dispersion in human brain at low locking fields arises from diffusion among inhomogeneities that generate intrinsic gradients on a scale of capillaries (~7.4 ± 0.5 µm).

13.
Neuroimage ; 257: 119244, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35533827

RESUMEN

Pain perception involves multiple brain regions and networks. Understanding how these brain networks work together is fundamental for appreciating network-wise changes reported in patients with chronic pain disorders. Parcellating pain related networks and understanding their causal relationships is the first step to understand how painful information is processed, integrated, and modulated, and it requires direct manipulation of specific brain regions. Nonhuman primates (NHP) offer an ideal model system to achieve these goals because cortical and subcortical regions in the NHP brain are established based on a variety of different types of data collected in a way that is not feasible or, at least, extremely difficult in humans (i.e., histology data, tract-tracing, intracerebral recordings). In addition, different methodological techniques can also help characterize and further understand these brain cortical and subcortical regions over the course of development. Here we used a heat nociceptive stimulation that is proven to elicit activity of nociceptive neurons in the cortex to refine and parcellate the whole brain nociceptive functional networks, to identify key network hubs, and to characterize network-wise temporal dynamic signatures using high-resolution fMRI. We first functionally localized 24 cortical and subcortical regions that responded to heat nociceptive stimuli (somatosensory area 1/2, area 3a/3b, S2, posterior insula (pIns), anterior insula, area 7b, posterior parietal cortex, anterior cingulate cortex (ACC), prefrontal cortex, caudate, and mediodorsal (MD) and ventral posterior lateral (VPL) thalamic nuclei) and used them as seeds in resting state fMRI (rsfMRI) data analysis. We applied both hierarchical clustering and graph-theory analyses of the pairwise rsfMRI correlation metrics and identified five cortical and one subcortical sub-networks: strong resting state functional connectivity (rsFC) between ACC and prefrontal regions, parietal cortex and area 7b, S2 and posterior insula, areas 3a/3b and 1/2 within the S1 cortex, and thalamic MD and caudate nuclei. The rsFC strengths between cortical areas within each subnetwork were significantly stronger than those between subcortical regions. Regions within each sub-network also exhibited highly correlated temporal dynamics at rest, but the overall dynamic patterns varied drastically across sub-networks. Graph-theory analysis identified the MD nucleus as a hub that connects subcortical and cortical nociceptive sub-networks. The S2-pIns connection joins the sensory and affective/cognitive sub-networks.


Asunto(s)
Mapeo Encefálico , Nocicepción , Animales , Mapeo Encefálico/métodos , Cognición , Humanos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/fisiología , Dolor , Primates
14.
Neuroimage ; 250: 118972, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131432

RESUMEN

Recent studies have demonstrated that the mathematical model used for analyzing and interpreting fMRI data in gray matter (GM) is inappropriate for detecting or describing blood-oxygenation-level-dependent (BOLD) signals in white matter (WM). In particular the hemodynamic response function (HRF) which serves as the regressor in general linear models is different in WM compared to GM. We recently reported measurements of the frequency contents of resting-state signal time courses in WM that showed distinct power spectra which depended on local structural-vascular-functional associations. In addition, multiple studies of GM have revealed how functional connectivity between regions, as measured by the correlation between BOLD time series, varies dynamically over time. We therefore investigated whether and how BOLD signals from WM in a resting state varied over time. We measured voxel-wise spectrograms, which reflect the time-varying spectral patterns of WM time courses. The results suggest that the spectral patterns are non-stationary but could be categorized into five modes that recurred over time. These modes showed distinct spatial distributions of their occurrences and durations, and the distributions were highly consistent across individuals. In addition, one of the modes exhibited a strong coupling of its occurrence between GM and WM across individuals, and two communities of WM voxels were identified according to the hierarchical structures of transitions among modes. Moreover, these modes are coupled to the shape of instantaneous HRFs. Our findings extend previous studies and reveal the non-stationary nature of spectral patterns of BOLD signals over time, providing a spatial-temporal-frequency characterization of resting-state signals in WM.


Asunto(s)
Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Adulto , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Masculino
15.
Neuroimage ; 258: 119399, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35724855

RESUMEN

A general linear model is widely used for analyzing fMRI data, in which the blood oxygenation-level dependent (BOLD) signals in gray matter (GM) evoked in response to neural stimulation are modeled by convolving the time course of the expected neural activity with a canonical hemodynamic response function (HRF) obtained a priori. The maps of brain activity produced reflect the magnitude of local BOLD responses. However, detecting BOLD signals in white matter (WM) is more challenging as the BOLD signals are weaker and the HRF is different, and may vary more across the brain. Here we propose a model-free approach to detect changes in BOLD signals in WM by measuring task-evoked increases of BOLD signal synchrony in WM fibers. The proposed approach relies on a simple assumption that, in response to a functional task, BOLD signals in relevant fibers are modulated by stimulus-evoked neural activity and thereby show greater synchrony than when measured in a resting state, even if their magnitudes do not change substantially. This approach is implemented in two technical stages. First, for each voxel a fiber-architecture-informed spatial window is created with orientation distribution functions constructed from diffusion imaging data. This provides the basis for defining neighborhoods in WM that share similar local fiber architectures. Second, a modified principal component analysis (PCA) is used to estimate the synchrony of BOLD signals in each spatial window. The proposed approach is validated using a 3T fMRI dataset from the Human Connectome Project (HCP) at a group level. The results demonstrate that neural activity can be reliably detected as increases in fMRI signal synchrony within WM fibers that are engaged in a task with high sensitivities and reproducibility.


Asunto(s)
Sustancia Blanca , Encéfalo , Mapeo Encefálico/métodos , Sustancia Gris/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología
16.
Magn Reson Med ; 87(3): 1507-1514, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34825730

RESUMEN

PURPOSE: There has been converging evidence of reliable detections of blood oxygenation level dependent (BOLD) signals evoked by neural stimulation and in a resting state in white matter (WM), within which few studies examined the relationship between BOLD functional signals and tissue metabolism. The purpose of the present study was to explore whether such relationship exists using combined functional MRI and positron emission tomography (PET) measurements of glucose uptake. METHODS: Functional and metabolic imaging data from 25 right-handed healthy human adults (aged 18-23 years, 18 females) were analyzed. Measures, including average resting state functional connectivity (FC) with respect to 82 Brodmann areas, fractional amplitude of low-frequency fluctuations (FALFF), and average fluorodeoxyglucose (FDG) uptake by PET, were computed for 48 predefined WM bundles. Pearson correlations across the bundles and 25 subjects studied were calculated among these measures. Linear mixed effects models were used to estimate the variance explainable by a predictor variable in the absence of inter-subject variations. RESULTS: Analysis of six separate imaging intervals found that average FC the bundles was significantly correlated with local FDG uptake (r = 0.25, p < 0.001), and the FC also covaried significantly with FALFF (r = 0.41, p < 0.001). When random effects from inter-subject variations were controlled, these correlations appeared to be medium to strong (r = 0.41 for FC vs. FDG uptake, and r = 0.65 for FALFF vs. FC). CONCLUSION: This study indicates that BOLD signals in WM are directly related to variations in metabolic demand and engagement with cortical processing and suggests they should be incorporated into more complete models of brain function.


Asunto(s)
Sustancia Blanca , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Femenino , Fluorodesoxiglucosa F18 , Glucosa , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Sustancia Blanca/diagnóstico por imagen
17.
NMR Biomed ; 35(12): e4799, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35794795

RESUMEN

The goal of the current study is to include transcytolemmal water exchange in MR cell size imaging using the IMPULSED model for more accurate characterization of tissue cellular properties (e.g., apparent volume fraction of intracellular space v in ) and quantification of indicators of transcytolemmal water exchange. We propose a heuristic model that incorporates transcytolemmal water exchange into a multicompartment diffusion-based method (IMPULSED) that was developed previously to extract microstructural parameters (e.g., mean cell size d and apparent volume fraction of intracellular space v in ) assuming no water exchange. For t diff ≤ 5 ms, the water exchange can be ignored, and the signal model is the same as the IMPULSED model. For t diff ≥ 30 ms, we incorporated the modified Kärger model that includes both restricted diffusion and exchange between compartments. Using simulations and previously published in vitro cell data, we evaluated the accuracy and precision of model-derived parameters and determined how they are dependent on SNR and imaging parameters. The joint model provides more accurate d values for cell sizes ranging from 10 to 12 microns when water exchange is fast (e.g., intracellular water pre-exchange lifetime τ in ≤ 100 ms) than IMPULSED, and reduces the bias of IMPULSED-derived estimates of v in , especially when water exchange is relatively slow (e.g., τ in > 200 ms). Indicators of transcytolemmal water exchange derived from the proposed joint model are linearly correlated with ground truth τ in values and can detect changes in cell membrane permeability induced by saponin treatment in murine erythroleukemia cancer cells. Our results suggest this joint model not only improves the accuracy of IMPULSED-derived microstructural parameters, but also provides indicators of water exchange that are usually ignored in diffusion models of tissues.


Asunto(s)
Agua Corporal , Ratones , Animales , Agua Corporal/metabolismo , Tamaño de la Célula , Permeabilidad de la Membrana Celular , Difusión
18.
NMR Biomed ; 35(10): e4786, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35704387

RESUMEN

Tubular atrophy and fibrosis are pathological changes that determine the prognosis of kidney disease induced by acute kidney injury (AKI). We aimed to evaluate multiple magnetic resonance imaging (MRI) parameters, including pool size ratio (PSR) from quantitative magnetization transfer, relaxation rates, and measures from spin-lock imaging ( R 1 ρ and S ρ ), for assessing the pathological changes associated with AKI-induced kidney disease. Eight-week-old male C57BL/6 J mice first underwent unilateral ischemia reperfusion injury (IRI) induced by reperfusion after 45 min of ischemia. They were imaged using a 7T MRI system 56 days after the injury. Paraffin tissue sections were stained using Masson trichrome and picrosirius red to identify histopathological changes such as tubular atrophy and fibrosis. Histology detected extensive tubular atrophy and moderate fibrosis in the cortex and outer stripe of the outer medulla (CR + OSOM) and more prominent fibrosis in the inner stripe of the outer medulla (ISOM) of IRI kidneys. In the CR + OSOM region, evident decreases in PSR, R 1 , R 2 , R 1 ρ , and S ρ showed in IRI compared with contralateral kidneys, with PSR and S ρ exhibiting the most significant changes. In addition, the exchange parameter S ρ dropped by the largest degree among all the MRI parameters, while R 2 * increased significantly. In the ISOM of IRI kidneys, PSR increased while S ρ kept decreasing. R 2 , R 1 ρ , and R 2 * all increased due to more severe fibrosis in this region. Among MRI measures, PSR and R 1 ρ showed the highest detectability of renal changes no matter whether tubular atrophy or fibrosis dominated. R 2 * and S ρ could be more specific to a single pathological event than other MRI measures because only R 2 * increased and S ρ decreased consistently when either fibrosis or tubular atrophy dominated, and their correlations with fibrosis scores were higher than other MRI measures. Multiparametric MRI may enable a more comprehensive analysis of histopathological changes following AKI.


Asunto(s)
Lesión Renal Aguda , Imágenes de Resonancia Magnética Multiparamétrica , Daño por Reperfusión , Lesión Renal Aguda/diagnóstico por imagen , Lesión Renal Aguda/etiología , Animales , Atrofia/complicaciones , Atrofia/patología , Fibrosis , Isquemia/patología , Riñón/diagnóstico por imagen , Riñón/patología , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Reperfusión/efectos adversos , Daño por Reperfusión/complicaciones , Daño por Reperfusión/diagnóstico por imagen , Daño por Reperfusión/patología
19.
Neuroimage ; 227: 117619, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33301942

RESUMEN

Noninvasive estimation of mean axon diameter presents a new opportunity to explore white matter plasticity, development, and pathology. Several diffusion-weighted MRI (DW-MRI) methods have been proposed to measure the average axon diameter in white matter, but they typically require many diffusion encoding measurements and complicated mathematical models to fit the signal to multiple tissue compartments, including intra- and extra-axonal spaces. Here, Monte Carlo simulations uncovered a straightforward DW-MRI metric of axon diameter: the change in radial apparent diffusion coefficient estimated at different effective diffusion times, ΔD⊥. Simulations indicated that this metric increases monotonically within a relevant range of effective mean axon diameter while being insensitive to changes in extra-axonal volume fraction, axon diameter distribution, g-ratio, and influence of myelin water. Also, a monotonic relationship was found to exist for signals coming from both intra- and extra-axonal compartments. The slope in ΔD⊥ with effective axon diameter increased with the difference in diffusion time of both oscillating and pulsed gradient diffusion sequences.


Asunto(s)
Axones , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Algoritmos , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Método de Montecarlo
20.
Neuroimage ; 240: 118391, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34271158

RESUMEN

Spontaneous fluctuations of Blood Oxygenation-Level Dependent (BOLD) MRI signal in a resting state have previously been detected and analyzed to describe intrinsic functional networks in the spinal cord of rodents, non-human primates and human subjects. In this study we combined high resolution imaging at high field with data-driven Independent Component Analysis (ICA) to i) delineate fine-scale functional networks within and between segments of the cervical spinal cord of monkeys, and also to ii) characterize the longitudinal effects of a unilateral dorsal column injury on these networks. Seven distinct functional hubs were revealed within each spinal segment, with new hubs detected at bilateral intermediate and gray commissure regions in addition to the bilateral dorsal and ventral horns previously reported. Pair-wise correlations revealed significantly stronger connections between hubs on the dominant hand side. Unilateral dorsal-column injuries disrupted predominantly inter-segmental rather than intra-segmental functional connectivities as revealed by correlation strengths and graph-theory based community structures. The effects of injury on inter-segmental connectivity were evident along the length of the cord both below and above the lesion region. Connectivity strengths recovered over time and there was revival of inter-segmental communities as animals recovered function. BOLD signals of frequency 0.01-0.033 Hz were found to be most affected by injury. The results in this study provide new insights into the intrinsic functional architecture of spinal cord and underscore the potential of functional connectivity measures to characterize changes in networks after an injury and during recovery.


Asunto(s)
Conectoma , Traumatismos de la Médula Espinal/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA