Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 23(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35628236

RESUMEN

Prostacyclin analogs are among the most effective and widely used therapies for pulmonary arterial hypertension (PAH). However, it is unknown whether they also confer protection through right ventricle (RV) myocardio-specific mechanisms. Moreover, the use of prostacyclin analogs in severe models of PAH has not been adequately tested. To further identify underlying responses to prostacyclin, a prostacyclin analogue, treprostinil, was used in a preclinical rat Sugen-chronic hypoxia (SuCH) model of severe PAH that closely resembles the human disease. Male Sprague-Dawley rats were implanted with osmotic pumps containing vehicle or treprostinil, injected concurrently with a bolus of Sugen (SU5416) and exposed to 3-week hypoxia followed by 3-week normoxia. RV function was assessed using pressure-volume loops and hypertrophy by weight assessed. To identify altered mechanisms within the RV, tissue samples were used to perform a custom RNA array analysis, histological staining, and protein and transcript level confirmatory analyses. Treprostinil significantly reduced SuCH-associated RV hypertrophy and decreased the rise in RV systolic pressure, mean pulmonary arterial (mPAP), and right atrial (RAP) pressure. Prostacyclin treatment was associated with improvements in RV stroke work, maximum rate of ventricular pressure change (max dP/dt) and the contractile index, and almost a complete reversal of SuCH-associated increase in RV end-systolic elastance, suggesting the involvement of load-independent improvements in intrinsic RV systolic contractility by prostacyclin treatment. An analysis of the RV tissues showed no changes in cardiac mitochondrial respiration and ATP generation. However, custom RNA array analysis revealed amelioration of SuCH-associated increases in newly identified TBX20 as well as the fibrotic markers collagen1α1 and collagen 3α1 upon treprostinil treatment. Taken together, our data support decreased afterload and load-independent improvements in RV function following prostacyclin administration in severe PAH, and these changes appear to associate with improvements in RV fibrotic responses.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Animales , Hipertensión Pulmonar Primaria Familiar/complicaciones , Hipertensión Pulmonar/patología , Hipertrofia Ventricular Derecha/complicaciones , Hipertrofia Ventricular Derecha/etiología , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Masculino , Prostaglandinas I , ARN , Ratas , Ratas Sprague-Dawley
2.
Proc Natl Acad Sci U S A ; 113(36): E5308-17, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27540115

RESUMEN

Despite numerous reports implicating NADPH oxidases (Nox) in the pathogenesis of many diseases, precise regulation of this family of professional reactive oxygen species (ROS) producers remains unclear. A unique member of this family, Nox1 oxidase, functions as either a canonical or hybrid system using Nox organizing subunit 1 (NoxO1) or p47(phox), respectively, the latter of which is functional in vascular smooth muscle cells (VSMC). In this manuscript, we identify critical requirement of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50; aka NHERF1) for Nox1 activation and downstream responses. Superoxide (O2 (•-)) production induced by angiotensin II (AngII) was absent in mouse EBP50 KO VSMC vs. WT. Moreover, ex vivo incubation of aortas with AngII showed a significant increase in O2 (•-) in WT but not EBP50 or Nox1 nulls. Similarly, lipopolysaccharide (LPS)-induced oxidative stress was attenuated in femoral arteries from EBP50 KO vs. WT. In silico analyses confirmed by confocal microscopy, immunoprecipitation, proximity ligation assay, FRET, and gain-/loss-of-function mutagenesis revealed binding of EBP50, via its PDZ domains, to a specific motif in p47(phox) Functional studies revealed AngII-induced hypertrophy was absent in EBP50 KOs, and in VSMC overexpressing EBP50, Nox1 gene silencing abolished VSMC hypertrophy. Finally, ex vivo measurement of lumen diameter in mouse resistance arteries exhibited attenuated AngII-induced vasoconstriction in EBP50 KO vs. WT. Taken together, our data identify EBP50 as a previously unidentified regulator of Nox1 and support that it promotes Nox1 activity by binding p47(phox) This interaction is pivotal for agonist-induced smooth muscle ROS, hypertrophy, and vasoconstriction and has implications for ROS-mediated physiological and pathophysiological processes.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ADN Helicasas/metabolismo , Hipertrofia/metabolismo , NADPH Oxidasa 1/genética , Fosfoproteínas/metabolismo , Proteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas Adaptadoras Transductoras de Señales , Angiotensina II/administración & dosificación , Angiotensina II/efectos adversos , Animales , ADN Helicasas/genética , Arteria Femoral/efectos de los fármacos , Arteria Femoral/metabolismo , Arteria Femoral/patología , Humanos , Hipertrofia/inducido químicamente , Hipertrofia/patología , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , NADPH Oxidasa 1/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfoproteínas/genética , Proteínas/genética , Especies Reactivas de Oxígeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Superóxidos/metabolismo , Vasoconstricción/efectos de los fármacos , Vasoconstricción/genética
3.
Antioxid Redox Signal ; 34(12): 891-914, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32746619

RESUMEN

Endothelial-to-mesenchymal transition (EndMT) is a process that encompasses extensive transcriptional reprogramming of activated endothelial cells leading to a shift toward mesenchymal cellular phenotypes and functional responses. Initially observed in the context of embryonic development, in the last few decades EndMT is increasingly recognized as a process that contributes to a variety of pathologies in the adult organism. Within the settings of cardiovascular biology, EndMT plays a role in various diseases, including atherosclerosis, heart valvular disease, cardiac fibrosis, and myocardial infarction. EndMT is also being progressively implicated in development and progression of pulmonary hypertension (PH) and pulmonary arterial hypertension (PAH). This review covers the current knowledge about EndMT in PH and PAH, and provides comprehensive overview of seminal discoveries. Topics covered include evidence linking EndMT to factors associated with PAH development, including hypoxia responses, inflammation, dysregulation of bone-morphogenetic protein receptor 2 (BMPR2), and redox signaling. This review amalgamates these discoveries into potential insights for the identification of underlying mechanisms driving EndMT in PH and PAH, and discusses future directions for EndMT-based therapeutic strategies in disease management.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Transición Epitelial-Mesenquimal/genética , Hipertensión Pulmonar/genética , Hipertensión Arterial Pulmonar/genética , Animales , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio/metabolismo , Endotelio/patología , Humanos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Células Madre Mesenquimatosas/metabolismo , Oxidación-Reducción , Hipertensión Arterial Pulmonar/patología , Transducción de Señal/genética
4.
Sci Adv ; 7(43): eabh3794, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34669463

RESUMEN

Cancer therapies are being considered for treating rare noncancerous diseases like pulmonary hypertension (PH), but effective computational screening is lacking. Via transcriptomic differential dependency analyses leveraging parallels between cancer and PH, we mapped a landscape of cancer drug functions dependent upon rewiring of PH gene clusters. Bromodomain and extra-terminal motif (BET) protein inhibitors were predicted to rely upon several gene clusters inclusive of galectin-8 (LGALS8). Correspondingly, LGALS8 was found to mediate the BET inhibitor­dependent control of endothelial apoptosis, an essential role for PH in vivo. Separately, a piperlongumine analog's actions were predicted to depend upon the iron-sulfur biogenesis gene ISCU. Correspondingly, the analog was found to inhibit ISCU glutathionylation, rescuing oxidative metabolism, decreasing endothelial apoptosis, and improving PH. Thus, we identified crucial drug-gene axes central to endothelial dysfunction and therapeutic priorities for PH. These results establish a wide-ranging, network dependency platform to redefine cancer drugs for use in noncancerous conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA