Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nutr ; 152(11): 2376-2386, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774104

RESUMEN

BACKGROUND: Egg protein is ingested during recovery from exercise to facilitate the postexercise increase in muscle protein synthesis rates and, as such, to support the skeletal muscle adaptive response to exercise training. The impact of cooking egg protein on postexercise muscle protein synthesis is unknown. OBJECTIVES: We sought to compare the impact of ingesting unboiled (raw) compared with boiled eggs during postexercise recovery on postprandial myofibrillar protein synthesis rates. METHODS: In a parallel design, 45 healthy, resistance-trained young men (age: 24 y; 95% CI: 23, 25 y) were randomly assigned to ingest 5 raw eggs (∼30 g protein), 5 boiled eggs (∼30 g protein), or a control breakfast (∼5 g protein) during recovery from a single session of whole-body resistance-type exercise. Primed continuous l-[ring-13C6]-phenylalanine infusions were applied, with frequent blood sampling. Muscle biopsies were collected immediately after cessation of resistance exercise and at 2 and 5 h into the postexercise recovery period. Primary (myofibrillar protein synthesis rates) and secondary (plasma amino acid concentrations) outcomes were analyzed using repeated-measures (time × group) ANOVA. RESULTS: Ingestion of eggs significantly increased plasma essential amino acid (EAA) concentrations, with 20% higher peak concentrations following ingestion of boiled compared with raw eggs (time × group: P < 0.001). Myofibrillar protein synthesis rates were significantly increased during the postexercise period when compared with basal, postabsorptive values in all groups (2-4-fold increase: P < 0.001). Postprandial myofibrillar protein synthesis rates were 20% higher after ingesting raw eggs [0.067%/h; 95% CI: 0.056, 0.077%/h; effect size (Cohen d): 0.63], and 18% higher after ingesting boiled eggs (0.065%/h; 95% CI: 0.058, 0.073%/h; effect size: 0.69) when compared with the control breakfast (0.056%/h; 95% CI: 0.048, 0.063%/h), with no significant differences between groups (time × group: P = 0.077). CONCLUSIONS: The ingestion of raw, as opposed to boiled, eggs attenuates the postprandial rise in circulating EAA concentrations. However, postexercise muscle protein synthesis rates do not differ after ingestion of 5 raw compared with 5 boiled eggs in healthy young men. This trial was registered at the Nederlands Trial Register as NL6506 (www.trialregister.nl).


Asunto(s)
Fenilalanina , Entrenamiento de Fuerza , Masculino , Humanos , Adulto Joven , Adulto , Fenilalanina/metabolismo , Huevos , Músculo Esquelético/metabolismo , Proteínas Musculares/metabolismo , Periodo Posprandial , Proteínas en la Dieta/metabolismo
2.
J Nutr ; 146(9): 1651-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27440260

RESUMEN

BACKGROUND: Muscle mass maintenance is largely regulated by basal muscle protein synthesis and the capacity to stimulate muscle protein synthesis after food intake. The postprandial muscle protein synthetic response is modulated by the amount, source, and type of protein consumed. It has been suggested that plant-based proteins are less potent in stimulating postprandial muscle protein synthesis than animal-derived proteins. However, few data support this contention. OBJECTIVE: We aimed to assess postprandial plasma amino acid concentrations and muscle protein synthesis rates after the ingestion of a substantial 35-g bolus of wheat protein hydrolysate compared with casein and whey protein. METHODS: Sixty healthy older men [mean ± SEM age: 71 ± 1 y; body mass index (in kg/m(2)): 25.3 ± 0.3] received a primed continuous infusion of l-[ring-(13)C6]-phenylalanine and ingested 35 g wheat protein (n = 12), 35 g wheat protein hydrolysate (WPH-35; n = 12), 35 g micellar casein (MCas-35; n = 12), 35 g whey protein (Whey-35; n = 12), or 60 g wheat protein hydrolysate (WPH-60; n = 12). Plasma and muscle samples were collected at regular intervals. RESULTS: The postprandial increase in plasma essential amino acid concentrations was greater after ingesting Whey-35 (2.23 ± 0.07 mM) than after MCas-35 (1.53 ± 0.08 mM) and WPH-35 (1.50 ± 0.04 mM) (P < 0.01). Myofibrillar protein synthesis rates increased after ingesting MCas-35 (P < 0.01) and were higher after ingesting MCas-35 (0.050% ± 0.005%/h) than after WPH-35 (0.032% ± 0.004%/h) (P = 0.03). The postprandial increase in plasma leucine concentrations was greater after ingesting Whey-35 than after WPH-60 (peak value: 580 ± 18 compared with 378 ± 10 µM, respectively; P < 0.01), despite similar leucine contents (4.4 g leucine). Nevertheless, the ingestion of WPH-60 increased myofibrillar protein synthesis rates above basal rates (0.049% ± 0.007%/h; P = 0.02). CONCLUSIONS: The myofibrillar protein synthetic response to the ingestion of 35 g casein is greater than after an equal amount of wheat protein. Ingesting a larger amount of wheat protein (i.e., 60 g) substantially increases myofibrillar protein synthesis rates in healthy older men. This trial was registered at clinicaltrials.gov as NCT01952639.


Asunto(s)
Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Proteínas de Plantas/administración & dosificación , Triticum/química , Anciano , Anciano de 80 o más Años , Aminoácidos Esenciales/sangre , Glucemia/metabolismo , Presión Sanguínea/efectos de los fármacos , Índice de Masa Corporal , Peso Corporal , Caseínas/administración & dosificación , Dieta , Método Doble Ciego , Ejercicio Físico , Humanos , Leucina/sangre , Masculino , Miofibrillas/metabolismo , Fenilalanina/administración & dosificación , Periodo Posprandial , Biosíntesis de Proteínas , Hidrolisados de Proteína/administración & dosificación , Proteína de Suero de Leche/administración & dosificación
3.
Am J Clin Nutr ; 105(2): 332-342, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27903518

RESUMEN

BACKGROUND: Muscle mass maintenance is largely regulated by basal muscle protein synthesis rates and the ability to increase muscle protein synthesis after protein ingestion. To our knowledge, no previous studies have evaluated the impact of habituation to either low protein intake (LOW PRO) or high protein intake (HIGH PRO) on the postprandial muscle protein synthetic response. OBJECTIVE: We assessed the impact of LOW PRO compared with HIGH PRO on basal and postprandial muscle protein synthesis rates after the ingestion of 25 g whey protein. DESIGN: Twenty-four healthy, older men [age: 62 ± 1 y; body mass index (in kg/m2): 25.9 ± 0.4 (mean ± SEM)] participated in a parallel-group randomized trial in which they adapted to either a LOW PRO diet (0.7 g · kg-1 · d-1; n = 12) or a HIGH PRO diet (1.5 g · kg-1 · d-1; n = 12) for 14 d. On day 15, participants received primed continuous l-[ring-2H5]-phenylalanine and l-[1-13C]-leucine infusions and ingested 25 g intrinsically l-[1-13C]-phenylalanine- and l-[1-13C]-leucine-labeled whey protein. Muscle biopsies and blood samples were collected to assess muscle protein synthesis rates as well as dietary protein digestion and absorption kinetics. RESULTS: Plasma leucine concentrations and exogenous phenylalanine appearance rates increased after protein ingestion (P < 0.01) with no differences between treatments (P > 0.05). Plasma exogenous phenylalanine availability over the 5-h postprandial period was greater after LOW PRO than after HIGH PRO (61% ± 1% compared with 56% ± 2%, respectively; P < 0.05). Muscle protein synthesis rates increased from 0.031% ± 0.004% compared with 0.039% ± 0.007%/h in the fasted state to 0.062% ± 0.005% compared with 0.057% ± 0.005%/h in the postprandial state after LOW PRO compared with HIGH PRO, respectively (P < 0.01), with no differences between treatments (P = 0.25). CONCLUSION: Habituation to LOW PRO (0.7 g · kg-1 · d-1) compared with HIGH PRO (1.5 g · kg-1 · d-1) augments the postprandial availability of dietary protein-derived amino acids in the circulation and does not lower basal muscle protein synthesis rates or increase postprandial muscle protein synthesis rates after ingestion of 25 g protein in older men. This trial was registered at clinicaltrials.gov as NCT01986842.


Asunto(s)
Proteínas en la Dieta/administración & dosificación , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Absorciometría de Fotón , Anciano , Glucemia/metabolismo , Índice de Masa Corporal , Dieta con Restricción de Proteínas , Ayuno , Humanos , Insulina/sangre , Leucina/sangre , Masculino , Persona de Mediana Edad , Fenilalanina/sangre , Periodo Posprandial , Biosíntesis de Proteínas , Proteína de Suero de Leche/administración & dosificación , Proteína de Suero de Leche/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA