Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Entropy (Basel) ; 24(12)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36554136

RESUMEN

We define common thermodynamic concepts purely within the framework of general Markov chains and derive Jarzynski's equality and Crooks' fluctuation theorem in this setup. In particular, we regard the discrete-time case, which leads to an asymmetry in the definition of work that appears in the usual formulation of Crooks' fluctuation theorem. We show how this asymmetry can be avoided with an additional condition regarding the energy protocol. The general formulation in terms of Markov chains allows transferring the results to other application areas outside of physics. Here, we discuss how this framework can be applied in the context of decision-making. This involves the definition of the relevant quantities, the assumptions that need to be made for the different fluctuation theorems to hold, as well as the consideration of discrete trajectories instead of the continuous trajectories, which are relevant in physics.

2.
PLoS Comput Biol ; 16(12): e1008420, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33270644

RESUMEN

The concept of free energy has its origins in 19th century thermodynamics, but has recently found its way into the behavioral and neural sciences, where it has been promoted for its wide applicability and has even been suggested as a fundamental principle of understanding intelligent behavior and brain function. We argue that there are essentially two different notions of free energy in current models of intelligent agency, that can both be considered as applications of Bayesian inference to the problem of action selection: one that appears when trading off accuracy and uncertainty based on a general maximum entropy principle, and one that formulates action selection in terms of minimizing an error measure that quantifies deviations of beliefs and policies from given reference models. The first approach provides a normative rule for action selection in the face of model uncertainty or when information processing capabilities are limited. The second approach directly aims to formulate the action selection problem as an inference problem in the context of Bayesian brain theories, also known as Active Inference in the literature. We elucidate the main ideas and discuss critical technical and conceptual issues revolving around these two notions of free energy that both claim to apply at all levels of decision-making, from the high-level deliberation of reasoning down to the low-level information processing of perception.


Asunto(s)
Teorema de Bayes , Entropía , Modelos Neurológicos , Humanos , Probabilidad , Incertidumbre
3.
Neural Comput ; 31(2): 440-476, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30576612

RESUMEN

Specialization and hierarchical organization are important features of efficient collaboration in economical, artificial, and biological systems. Here, we investigate the hypothesis that both features can be explained by the fact that each entity of such a system is limited in a certain way. We propose an information-theoretic approach based on a free energy principle in order to computationally analyze systems of bounded rational agents that deal with such limitations optimally. We find that specialization allows a focus on fewer tasks, thus leading to a more efficient execution, but in turn, it requires coordination in hierarchical structures of specialized experts and coordinating units. Our results suggest that hierarchical architectures of specialized units at lower levels that are coordinated by units at higher levels are optimal, given that each unit's information-processing capability is limited and conforms to constraints on complexity costs.

4.
Entropy (Basel) ; 21(4)2019 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33267089

RESUMEN

In its most basic form, decision-making can be viewed as a computational process that progressively eliminates alternatives, thereby reducing uncertainty. Such processes are generally costly, meaning that the amount of uncertainty that can be reduced is limited by the amount of available computational resources. Here, we introduce the notion of elementary computation based on a fundamental principle for probability transfers that reduce uncertainty. Elementary computations can be considered as the inverse of Pigou-Dalton transfers applied to probability distributions, closely related to the concepts of majorization, T-transforms, and generalized entropies that induce a preorder on the space of probability distributions. Consequently, we can define resource cost functions that are order-preserving and therefore monotonic with respect to the uncertainty reduction. This leads to a comprehensive notion of decision-making processes with limited resources. Along the way, we prove several new results on majorization theory, as well as on entropy and divergence measures.

5.
Theory Decis ; 93(4): 663-690, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36245967

RESUMEN

We introduce a new class of real-valued monotones in preordered spaces, injective monotones. We show that the class of preorders for which they exist lies in between the class of preorders with strict monotones and preorders with countable multi-utilities, improving upon the known classification of preordered spaces through real-valued monotones. We extend several well-known results for strict monotones (Richter-Peleg functions) to injective monotones, we provide a construction of injective monotones from countable multi-utilities, and relate injective monotones to classic results concerning Debreu denseness and order separability. Along the way, we connect our results to Shannon entropy and the uncertainty preorder, obtaining new insights into how they are related. In particular, we show how injective monotones can be used to generalize some appealing properties of Jaynes' maximum entropy principle, which is considered a basis for statistical inference and serves as a justification for many regularization techniques that appear throughout machine learning and decision theory.

6.
Front Neurosci ; 13: 1230, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824241

RESUMEN

In the face of limited computational resources, bounded rational decision theory predicts that information-processing should be concentrated on actions that make a significant contribution in terms of the utility achieved. Accordingly, information-processing can be simplified by choosing stereotypic actions that lead to satisfactory performance over a range of different inputs rather than choosing a specific action for each input. Such a set of similar inputs with similar action responses would then correspond to an abstraction that can be harnessed with possibly negligible loss in utility, but with potentially considerable savings in information-processing effort. Here we test this prediction in an identification task, where human subjects were asked to estimate the roundness of ellipses varying from a straight line to a perfect circle. Crucially, when reporting their estimates, subjects could choose between three different levels of precision corresponding to three levels of abstraction in a decision-making hierarchy. To induce changes in level selection, we manipulated the information-processing resources available at the perceptual and action stages by varying the difficulty of identifying the stimulus and by enforcing different response times in the action stage. In line with theoretical predictions, we find that subjects adapt their abstraction level depending on the available resources. We compare subjects' behavior to the maximum efficiency predicated by the bounded rational decision-making model and investigate possible sources of inefficiency.

7.
Front Neurosci ; 12: 932, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618561

RESUMEN

Expected utility models are often used as a normative baseline for human performance in motor tasks. However, this baseline ignores computational costs that are incurred when searching for the optimal strategy. In contrast, bounded rational decision-theory provides a normative baseline that takes computational effort into account, as it describes optimal behavior of an agent with limited information-processing capacity to change a prior motor strategy (before information-processing) into a posterior strategy (after information-processing). Here, we devised a pointing task where subjects had restricted reaction and movement time. In particular, we manipulated the permissible reaction time as a proxy for the amount of computation allowed for planning the movements. Moreover, we tested three different distributions over the target locations to induce different prior strategies that would influence the amount of required information-processing. We found that movement endpoint precision generally decreases with limited planning time and that non-uniform prior probabilities allow for more precise movements toward high-probability targets. Considering these constraints in a bounded rational decision model, we found that subjects were generally close to bounded optimal. We conclude that bounded rational decision theory may be a promising normative framework to analyze human sensorimotor performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA