Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35632027

RESUMEN

Carton detection is an important technique in the automatic logistics system and can be applied to many applications such as the stacking and unstacking of cartons and the unloading of cartons in the containers. However, there is no public large-scale carton dataset for the research community to train and evaluate the carton detection models up to now, which hinders the development of carton detection. In this article, we present a large-scale carton dataset named Stacked Carton Dataset (SCD) with the goal of advancing the state-of-the-art in carton detection. Images were collected from the Internet and several warehouses, and objects were labeled for precise localization using instance mask annotation. There were a total of 250,000 instance masks from 16,136 images. Naturally, a suite of benchmarks was established with several popular detectors and instance segmentation models. In addition, we designed a carton detector based on RetinaNet by embedding our proposed Offset Prediction between the Classification and Localization module (OPCL) and the Boundary Guided Supervision module (BGS). OPCL alleviates the imbalance problem between classification and localization quality, which boosts AP by 3.1∼4.7% on SCD at the model level, while BGS guides the detector to pay more attention to the boundary information of cartons and decouple repeated carton textures at the task level. To demonstrate the generalization of OPCL for other datasets, we conducted extensive experiments on MS COCO and PASCAL VOC. The improvements in AP on MS COCO and PASCAL VOC were 1.8∼2.2% and 3.4∼4.3%, respectively.


Asunto(s)
Compuestos Orgánicos Volátiles
2.
Science ; 371(6533): 1046-1049, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33602863

RESUMEN

The evolution of massive stars is influenced by the mass lost to stellar winds over their lifetimes. These winds limit the masses of the stellar remnants (such as black holes) that the stars ultimately produce. We used radio astrometry to refine the distance to the black hole x-ray binary Cygnus X-1, which we found to be [Formula: see text] kiloparsecs. When combined with archival optical data, this implies a black hole mass of 21.2 ± 2.2 solar masses, which is higher than previous measurements. The formation of such a high-mass black hole in a high-metallicity system (within the Milky Way) constrains wind mass loss from massive stars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA