Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Chem Ecol ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532168

RESUMEN

This study investigates the efficacy of three different olfactory cues - cyclohexanone, linalool oxide (LO), and 6-methyl-5-heptan-2-one (sulcatone) - in attracting Aedes aegypti, the primary vector of dengue, using BG sentinel traps in a dengue-endemic area (urban Ukunda) in coastal Kenya. Two experiments were conducted. Experiment 1 compared solid formulations of the compounds in polymer beads against liquid formulations with hexane as the solvent. CO2-baited traps served as controls. In Experiment 2, traps were baited with each compound in the polymer beads, commercial BG-Lure, and CO2. Our results indicate that CO2-baited traps recorded the greatest Ae. aegypti captures in both Experiment 1 and 2, whereas trap captures with polymer beads and solvent-based treatments were comparable. In experiment 2, polymer bead-based treatments yielded significantly greater female captures, each recording ~ 2-fold more captures than traps baited with the BG-Lure. There was no significant difference, however, between the treatments. Female Ae. aegypti captured in CO2-baited traps were mainly unfed (91%), with fewer gravid mosquitoes (6.4%) compared to traps with test compounds (range; 12.7-21.1%). Male captures were lower in LO and BG-Lure baited traps compared to other treatments. Gravimetric analysis showed LO had a slower release rate compared to other compounds. The findings suggest that host-associated compounds loaded on polymer beads are more effective in trapping Ae. aegypti than commercial BG-Lure and reveal sex-specific differences in mosquito responses. These results have implications for mosquito surveillance and control programs, highlighting the potential for selective trapping strategies.

2.
PLoS Pathog ; 12(8): e1005773, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27490374

RESUMEN

The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities.


Asunto(s)
Culicidae , Conducta Alimentaria , Insectos Vectores , Malaria Falciparum/transmisión , Plantas , Animales , Humanos
3.
Sci Rep ; 14(1): 12117, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802536

RESUMEN

The implementation of the sterile insect technique against Aedes albopictus relies on many parameters, in particular on the success of the sterilization of males to be released into the target area in overflooding numbers to mate with wild females. Achieving consistent sterility levels requires efficient and standardized irradiation protocols. Here, we assessed the effects of exposure environment, density of pupae, irradiation dose, quantity of water and location in the canister on the induced sterility of male pupae. We found that the irradiation of 2000 pupae in 130 ml of water and with a dose of 40 Gy was the best combination of factors to reliably sterilize male pupae with the specific irradiator used in our control program, allowing the sterilization of 14000 pupae per exposure cycle. The location in the canister had no effect on induced sterility. The results reported here allowed the standardization and optimization of irradiation protocols for a Sterile Insect Technique program to control Ae. albopictus on Reunion Island, which required the production of more than 300,000 sterile males per week.


Asunto(s)
Aedes , Control de Mosquitos , Pupa , Animales , Aedes/efectos de la radiación , Aedes/fisiología , Masculino , Pupa/efectos de la radiación , Femenino , Control de Mosquitos/métodos , Reunión , Control Biológico de Vectores/métodos
4.
Ecol Evol ; 14(3): e11187, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38533352

RESUMEN

Anopheles gambiae and Anopheles coluzzii mosquitoes, two major malaria vectors in sub-Saharan Africa, exhibit selectivity among plant species as potential food sources. However, it remains unclear if their preference aligns with optimal nutrient intake and survival. Following an extensive screening of the effects of 31 plant species on An. coluzzii in Burkina Faso, we selected three species for their contrasting effects on mosquito survival, namely Ixora coccinea, Caesalpinia pulcherrima, and Combretum indicum. We assessed the sugar content of these plants and their impact on mosquito fructose positivity, survival, and insemination rate, using Anopheles coluzzii and Anopheles gambiae, with glucose 5% and water as controls. Plants displayed varying sugar content and differentially affected the survival, sugar intake, and insemination rate of mosquitoes. All three plants were more attractive to mosquitoes than controls, with An. gambiae being more responsive than An. coluzzii. Notably, C. indicum was the most attractive but had the lowest sugar content and offered the lowest survival, insemination rate, and fructose positivity. Our findings unveil a performance-preference mismatch in An. coluzzii and An. gambiae regarding plant food sources. Several possible reasons for this negative correlation between performance and preference are discussed.

5.
Infect Dis Poverty ; 13(1): 78, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39456106

RESUMEN

BACKGROUND: Understanding of mosquito spatiotemporal dynamics is central to characterize candidate field sites for the sterile insect technique (SIT) testing, and is critical to the effective implementation and evaluation of pilot sterile male release programs. Here, we present a detailed description of Aedes albopictus (Skuse) egg-laying activity over a 6-year period in urban areas identified as potential SIT testing sites on Reunion Island. METHOD: Weekly entomological collections using ovitraps were carried out in residential and adjacent uninhabited habitats in two urban areas, Duparc and Bois Rouge, in the municipality of Sainte Marie, Reunion Island. Time-series data incorporating the frequency of positive ovitraps and the total number of eggs/ovitrap recorded each time at each locality during the study period from May 2013 to December 2018 were analyzed with multifaceted statistical approaches including descriptive statistics and spatiotemporal analyses incorporating the role of climatic factors on overall ovitrap productivity. RESULTS: During the ovitrap survey, the proportion of egg-positive ovitraps differed among study sites (χ2 = 50.21, df = 2, P < 0.001), being relatively lower in Duparc (89.5%) than in Bois-Rouges (95.3%) and the adjacent buffer zone (91.2%). Within each neighborhood, Ae. albopictus egg abundance varied by month in a roughly seasonal pattern marked by a single peak occurring more regularly February each year, a decline at the onset of the austral winter in July, followed by a period of lower ovitrap productivity in August and September. Fluctuation in both positivity rate and eggs densities per ovitraps were related to annual and seasonal variations in local temperature and rainfall (P < 0.001 in all cases). The spatial analysis also captured substantial between- and within-habitats heterogeneity, whereby the overall ovitrap productivity was higher in residential areas than in the buffer zone. CONCLUSIONS: Collectively, these results reveal that the distribution of Ae. albopictus oviposition activity is shaped by local habitat heterogeneity and seasonal climatic factors. Overall, this study provides baseline insights into the reproductive dynamics of Ae. albopictus, which would assist in planning locally tailored SIT interventions, while addressing concerns related to focal areas of high egg-laying intensity and potential immigration of females from natural areas.


Asunto(s)
Aedes , Oviposición , Animales , Aedes/fisiología , Oviposición/fisiología , Reunión , Femenino , Análisis Espacio-Temporal , Control de Mosquitos/métodos , Mosquitos Vectores/fisiología , Estaciones del Año , Ecosistema , Masculino , Ciudades
6.
Sci Rep ; 13(1): 17628, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848666

RESUMEN

Hematophagous insects belonging to the Aedes genus are proven vectors of viral and filarial pathogens of medical interest. Aedes albopictus is an increasingly important vector because of its rapid worldwide expansion. In the context of global climate change and the emergence of zoonotic infectious diseases, identification tools with field application are required to strengthen efforts in the entomological survey of arthropods with medical interest. Large scales and proactive entomological surveys of Aedes mosquitoes need skilled technicians and/or costly technical equipment, further puzzled by the vast amount of named species. In this study, we developed an automatic classification system of Aedes species by taking advantage of the species-specific marker displayed by Wing Interferential Patterns. A database holding 494 photomicrographs of 24 Aedes spp. from which those documented with more than ten pictures have undergone a deep learning methodology to train a convolutional neural network and test its accuracy to classify samples at the genus, subgenus, and species taxonomic levels. We recorded an accuracy of 95% at the genus level and > 85% for two (Ochlerotatus and Stegomyia) out of three subgenera tested. Lastly, eight were accurately classified among the 10 Aedes sp. that have undergone a training process with an overall accuracy of > 70%. Altogether, these results demonstrate the potential of this methodology for Aedes species identification and will represent a tool for the future implementation of large-scale entomological surveys.


Asunto(s)
Aedes , Ochlerotatus , Animales , Mosquitos Vectores , Aprendizaje Automático , Especificidad de la Especie
7.
Pest Manag Sci ; 78(7): 2729-2745, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35294802

RESUMEN

The risks of Aedes aegypti and Aedes albopictus nuisance and vector-borne diseases are rising and the adverse effects of broad-spectrum insecticide application have promoted species-specific techniques, such as sterile insect technique (SIT) and other genetic strategies, as contenders in their control operations. When specific vector suppression is proposed, potential effects on predators and wider ecosystem are some of the first stakeholder questions. These are not the only Aedes vectors of human diseases, but are those for which SIT and genetic strategies are of most interest. They vary ecologically and in habitat origin, but both have behaviorally human-adapted forms with expanding ranges. The aquatic life stages are where predation is strongest due to greater resource predictability and limited escape opportunity. These vectors' anthropic forms usually use ephemeral water bodies and man-made containers as larval habitats; predators that occur in these are mobile, opportunistic and generalist. No literature indicates that any predator depends on larvae of either species. As adults, foraging theory predicts these mosquitoes are of low profitability to predators. Energy expended hunting and consuming will mostly outweigh their energetic benefit. Moreover, as adult biomass is mobile and largely disaggregated, any predator is likely to be a generalist and opportunist. This work, which summarizes much of the literature currently available on the predators of Ae. aegypti and Ae. albopictus, indicates it is highly unlikely that any predator species depends on them. Species-specific vector control to reduce nuisance and disease is thus likely to be of negligible or limited impact on nontarget predators. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Aedes , Dengue , Fiebre Amarilla , Animales , Ecosistema , Humanos , Larva , Mosquitos Vectores
8.
Sci Rep ; 12(1): 19544, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380224

RESUMEN

Competent arbovirus vectors are found in the culicid mosquito fauna of south-west Indian Ocean (SWIO) islands. In La Reunion, Aedes albopictus and Aedes aegypti mosquitoes are known vectors of dengue and chikungunya viruses. Culex quinquefasciatus is a potential vector of Rift Valley fever and West Nile viruses. To prepare a vector-control field trial against Ae. aegypti, this study aimed at identifying the best trapping strategy to catch adult Ae. aegypti, using BG-Sentinel traps (Biogents, Germany). It was implemented in two sites in southern La Reunion. Catches of Ae. albopictus and Cx. quinquefasciatus mosquitoes were also recorded. A Latin square design was used to estimate the detection probability and the apparent daily density-according to the BG-Sentinel trapping strategy: none, carbon dioxide (CO2), a commercial attractant-BG-Lure (Biogents, Germany), or both. The use of CO2 alone was associated with a higher detection probability for Ae. aegypti and Cx. quinquefasciatus mosquitoes, as well as a large increase in their apparent density. Traps with BG-Lure-alone or in combination with CO2, did not improve the detection probability of Ae. aegypti and Cx. quinquefasciatus mosquitoes. The same result was found for male Ae. albopictus. For females, baiting BG-Sentinel traps with CO2 or BG-Lure had no significant effect. The same apparent densities were found for Ae. aegypti and Ae. albopictus mosquitoes in both study sites-where Ae. aegypti mosquitoes were found at very low densities during previous surveys.


Asunto(s)
Aedes , Arbovirus , Culex , Animales , Femenino , Masculino , Mosquitos Vectores , Dióxido de Carbono , Reunión , Control de Mosquitos
9.
Insects ; 13(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35206720

RESUMEN

In Reunion Island, the feasibility of an Aedes albopictus control program using the Sterile Insect Technique (SIT) is studied. Because, in some regions, Ae. albopictus is living in sympatry with Aedes aegypti, the impact of releasing millions of sterile male Ae. albopictus on female Ae. aegypti reproduction needs to be assessed. Thus, to study the potential heterospecific matings, a marking technique using rhodamine B has been used. Rhodamine is given in solution to male mosquitoes to be incorporated into the male body and seminal fluid and transferred during mating into the bursa inseminalis and spermathecae of females. The presence of rhodamine in females occurred in 15% of cases when Ae. aegypti females were offered non-irradiated Ae. albopictus males, 5% when offered irradiated Ae. albopictus males and 18% of cases in the inverse heterospecific matings. Moreover, our results also showed that these matings gave few eggs but were not viable. Finally, the results showed that whatever the type of mating crosses, females in cages previously crossed with males of another species can re-mate with males of their species and produce an equivalent amount of egg compared to females only mated with conspecific males. Despite the promiscuity of the males and females in small cages for three days, heterospecific mating between sterile male Ae. albopictus and female Ae aegypti, 95% of the females have not been inseminated suggesting that in the field the frequency satyrization would be very low.

10.
Sci Rep ; 12(1): 18450, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323764

RESUMEN

Several dengue epidemics recently occurred in La Reunion, an island harboring two dengue viruses (DVs) vectors: Aedes albopictus, and Ae. aegypti, the former being the main local DV vector. Aedes aegypti shows a peculiar ecology, compared to other tropical populations of the same species. This study aimed to provide researchers and public-health users with locally validated oviposition traps (ovitraps) to monitor Aedes populations. A field experiment was performed in Saint-Joseph to assess the effect of different settings on the detection probability and apparent density of Aedes mosquitoes. Black plastic ovitraps were identified as the best choice. Vacoa trees (Pandanus utilis) were the only observed breeding sites for Ae. aegypti, shared with Ae. albopictus. They were the experimental units in a Latin square design with three factors: trap position in the trees (ground vs canopy), oviposition surface in the trap (blotting paper vs. vacoa leaf), and addition of organic matter to the trap water. The latter factor was found unimportant. On the ground, Ae. aegypti eggs were only found with vacoa leaves as the oviposition surface. Their detection and apparent density increased when ovitraps were located in the tree canopy. The main factor for Ae. albopictus was the oviposition surface, with a preference for blotting paper. In all trap settings, their detection was close to 100%. Larval survival was lower for a high egg density, combined with blotting paper as the oviposition surface. When monitoring mixed Aedes populations in La Reunion, we recommend using black plastic ovitraps, placed at 1.50-to-2.00-m high in vacoa trees, with vacoa leaves as the oviposition surface.


Asunto(s)
Aedes , Arbovirus , Animales , Femenino , Oviposición , Reunión , Mosquitos Vectores , Fitomejoramiento , Plásticos/farmacología
11.
Sci Rep ; 12(1): 21431, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36509797

RESUMEN

Success in reducing malaria transmission through vector control is threatened by insecticide resistance in mosquitoes. Although the proximal molecular mechanisms and genetic determinants involved are well documented, little is known about the influence of the environment on mosquito resistance to insecticides. The aim of this study was to assess the effect of plant sugar feeding on the response of Anopheles gambiae sensu lato to insecticides. Adults were fed with one of four treatments, namely a 5% glucose control solution, nectariferous flowers of Barleria lupulina, of Cascabela thevetia and a combination of both B. lupulina + C. thevetia. WHO tube tests were performed with 0.05% and 0.5% deltamethrin, and knockdown rate (KD) and the 24 h mosquito mortality were measured. Plant diet significantly influenced mosquito KD rate at both concentrations of deltamethrin. Following exposure to 0.05% deltamethrin, the B. lupulina diet induced a 2.5 fold-increase in mosquito mortality compared to 5% glucose. Species molecular identification confirmed the predominance of An. gambiae (60% of the samples) over An. coluzzii and An. arabiensis in our study area. The kdr mutation L1014F displayed an allelic frequency of 0.75 and was positively associated with increased phenotypic resistance to deltamethrin. Plant diet, particularly B. lupulina, increased the susceptibility of mosquitoes to insecticides. The finding that B. lupulina-fed control individuals (i.e. not exposed to deltamethrin) also displayed increased 24 h mortality suggests that plant-mediated effects may be driven by a direct effect of plant diet on mosquito survival rather than indirect effects through interference with insecticide-resistance mechanisms. Thus, some plant species may weaken mosquitoes, making them less vigorous and more vulnerable to the insecticide. There is a need for further investigation, using a wider range of plant species and insecticides, in combination with other relevant environmental factors, to better understand the expression and evolution of insecticide resistance.


Asunto(s)
Anopheles , Insecticidas , Piretrinas , Humanos , Animales , Anopheles/fisiología , Piretrinas/farmacología , Mosquitos Vectores/fisiología , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Dieta , Control de Mosquitos
12.
Sci Rep ; 11(1): 7354, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795801

RESUMEN

The expansion of mosquito species worldwide is creating a powerful network for the spread of arboviruses. In addition to the destruction of breeding sites (prevention) and mass trapping, methods based on the sterile insect technique (SIT), the autodissemination of pyriproxyfen (ADT), and a fusion of elements from both of these known as boosted SIT (BSIT), are being developed to meet the urgent need for effective vector control. However, the comparative potential of these methods has yet to be explored in different environments. This is needed to propose and integrate informed guidelines into sustainable mosquito management plans. We extended a weather-dependent model of Aedes albopictus population dynamics to assess the effectiveness of these different vector control methods, alone or in combination, in a tropical (Reunion island, southwest Indian Ocean) and a temperate (Montpellier area, southern France) climate. Our results confirm the potential efficiency of SIT in temperate climates when performed early in the year (mid-March for northern hemisphere). In such a climate, the timing of the vector control action was the key factor in its success. In tropical climates, the potential of the combination of methods becomes more relevant. BSIT and the combination of ADT with SIT were twice as effective compared to the use of SIT alone.


Asunto(s)
Aedes/fisiología , Aedes/virología , Control de Mosquitos/métodos , Mosquitos Vectores , Animales , Clima , Ecología , Francia , Masculino , Dinámica Poblacional , Piridinas/química , Reunión , Clima Tropical , Tiempo (Meteorología)
13.
Insects ; 12(3)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668374

RESUMEN

Aedes albopictus and Aedes aegypti are invasive mosquito species that impose a substantial risk to human health. To control the abundance and spread of these arboviral pathogen vectors, the sterile insect technique (SIT) is emerging as a powerful complement to most commonly-used approaches, in part, because this technique is ecologically benign, specific, and non-persistent in the environment if releases are stopped. Because SIT and other similar vector control strategies are becoming of increasing interest to many countries, we offer here a pragmatic and accessible 'roadmap' for the pre-pilot and pilot phases to guide any interested party. This will support stakeholders, non-specialist scientists, implementers, and decision-makers. Applying these concepts will ensure, given adequate resources, a sound basis for local field trialing and for developing experience with the technique in readiness for potential operational deployment. This synthesis is based on the available literature, in addition to the experience and current knowledge of the expert contributing authors in this field. We describe a typical path to successful pilot testing, with the four concurrent development streams of Laboratory, Field, Stakeholder Relations, and the Business and Compliance Case. We provide a graphic framework with criteria that must be met in order to proceed.

14.
Malar J ; 9: 78, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20298619

RESUMEN

BACKGROUND: Several cases of malaria are frequently recorded during the dry period in Ouagadougou town (Burkina Faso). This has led to the design of a series of studies focusing on both parasitological and entomological investigations intended to provide relevant health data on the risk of local malaria transmission according to the way of urbanisation. METHODS: A cross-sectional entomological survey was carried out in various districts of Ouagadougou in April and October 2006. Adult malaria vectors were collected using CDC traps and indoor insecticide spraying performed in four houses during four consecutive days/nights. Intensive larval sampling was also done in available water ponds throughout the study sites. RESULTS: In April, the anopheline breeding sites consisted only of semi-permanent or permanent swamps located mainly in the two peripheral districts. Despite the presence of anopheline larvae in these breeding sites, less than five Anopheles gambiae s.l. adults were caught by CDC traps and indoor insecticide spraying. In October, additionally to the permanent breeding sites reported in April, some rainfall swamps were also found positive to anophelines. The number of adults' mosquitoes was higher than that collected in April (2 vs 159 in October). Out of 115 larvae of An. gambiae s.l. analysed by PCR in April, 59.1% (68/115) were identified as Anopheles arabiensis, 39.1% (45/115) as An. gambiae M while the S form represented less than 2%. Overall 120 larvae and 86 females were identified by PCR in October as An. gambiae M form (51%) and An. arabiensis (42.2%). The S form represented only 6.8%. The global sporozoite rate recorded was high (6.8%) and did not differ between the districts except in the central district where no positive mosquito was detected. CONCLUSION: Although only few adults' mosquitoes were actively caught during the driest month, malaria vectors persisted all year long that increases the risk of urban malaria transmission. The distribution of breeding sites and especially the occurrence of malaria vectors were more abundant in the periphery, which is more like that of a rural settlement. The evolution of malaria prevalence and the factors sustaining the risk of transmission in Ouagadougou as well in many African cities during the dry season are discussed.


Asunto(s)
Anopheles/fisiología , Ecosistema , Insectos Vectores/fisiología , Larva/fisiología , Estaciones del Año , Animales , Anopheles/clasificación , Anopheles/genética , Cruzamiento , Burkina Faso , Estudios Transversales , Femenino , Insectos Vectores/genética , Larva/genética , Densidad de Población , Dinámica Poblacional
15.
PLoS One ; 15(1): e0227407, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31951601

RESUMEN

Mosquitoes are responsible for the transmission of major pathogens worldwide. Modelling their population dynamics and mapping their distribution can contribute effectively to disease surveillance and control systems. Two main approaches are classically used to understand and predict mosquito abundance in space and time, namely empirical (or statistical) and process-based models. In this work, we used both approaches to model the population dynamics in Reunion Island of the 'Tiger mosquito', Aedes albopictus, a vector of dengue and chikungunya viruses, using rainfall and temperature data. We aimed to i) evaluate and compare the two types of models, and ii) develop an operational tool that could be used by public health authorities and vector control services. Our results showed that Ae. albopictus dynamics in Reunion Island are driven by both rainfall and temperature with a non-linear relationship. The predictions of the two approaches were consistent with the observed abundances of Ae. albopictus aquatic stages. An operational tool with a user-friendly interface was developed, allowing the creation of maps of Ae. albopictus densities over the whole territory using meteorological data collected from a network of weather stations. It is now routinely used by the services in charge of vector control in Reunion Island.


Asunto(s)
Aedes/fisiología , Modelos Biológicos , Control de Mosquitos , Mosquitos Vectores/fisiología , Animales , Calor , Humanos , Dinámica Poblacional , Lluvia
16.
Sci Total Environ ; 743: 140631, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32758822

RESUMEN

Cancer is a major public health issue and represents a significant burden in countries with different levels of economic wealth. In parallel, mosquito-borne infectious diseases represent a growing problem causing significant morbidity and mortality worldwide. Acknowledging that these two concerns are both globally distributed, it is essential to investigate whether they have a reciprocal connection that can fuel their respective burdens. Unfortunately, very few studies have examined the link between these two threats. This review provides an overview of the possible links between mosquitoes, mosquito-borne infectious diseases and cancer. We first focus on the impact of mosquitoes on carcinogenesis in humans including the transmission of oncogenic pathogens through mosquitoes, the immune reactions following mosquito bites, the presence of non-oncogenic mosquito-borne pathogens, and the direct transmission of cancer cells. The second part of this review deals with the direct or indirect consequences of cancer in humans on mosquito behaviour. Thirdly, we discuss the potential impacts that natural cancers in mosquitoes can have on their life history traits and therefore on their vector capacity. Finally, we discuss the most promising research avenues on this topic and the integrative public health strategies that could be envisioned in this context.


Asunto(s)
Mosquitos Vectores , Neoplasias , Animales , Humanos
17.
Insects ; 11(11)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171885

RESUMEN

The global expansion of Aedes albopictus, together with the absence of specific treatment and vaccines for most of the arboviruses it transmits, has stimulated the development of more sustainable and ecologically acceptable methods for control of disease transmission through the suppression of natural vector populations. The sterile insect technique (SIT) is rapidly evolving as an additional tool for mosquito control, offering an efficient and more environment-friendly alternative to the use of insecticides. Following the devastating chikungunya outbreak, which affected 38% of the population on Reunion Island (a French overseas territory in the southwest of the Indian Ocean), there has been strong interest and political will to develop effective alternatives to the existing vector control strategies. Over the past 10 years, the French Research and Development Institute (IRD) has established an SIT feasibility program against Ae. albopictus on Reunion Island in collaboration with national and international partners. This program aimed to determine whether the SIT based on the release of radiation-sterilized males is scientifically and technically feasible, and socially acceptable as part of a control strategy targeting the local Ae. albopictus population. This paper provides a review of a multi-year and a particularly broad scoping process of establishing the scientific and technological feasibility of the SIT against Ae. albopictus on Reunion Island. It also draws attention to some prerequisites of the decision-making process, through awareness campaigns to enhance public understanding and support, social adoption, and regulatory validation of the SIT pilot tests.

18.
Trop Med Int Health ; 14(2): 228-36, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19187525

RESUMEN

Many species of disease-vector mosquitoes display vertebrate host specificity. Despite considerable progress in recent years in understanding the proximate and ultimate factors related to non-random host selection at the interspecific level, the basis of this selection remains only partially understood. Anopheles gambiae sensu stricto, the main malaria vector in Africa, is considered a highly anthropophilic mosquito, and host odours have been shown to play a major role in the host-seeking process of this species. Studies on host preference of An. gambiae have been either conducted in controlled conditions using laboratory reared mosquitoes and worn stockings as host-related stimuli, or have been done in the field with methods that do not account for internal (e.g. age of sampled mosquitoes) and/or environmental effects. We explored differential behavioural responses to host odours between two populations of the same sibling species, An. gambiae in semi-field conditions in Burkina Faso. The behavioural responses (i.e. degree of activation and strength of anemotaxis) were investigated using a Y-olfactometer designed to accommodate whole hosts as a source of odour stimuli. Two strains of An. gambiae (3 to 4-day-old female) from laboratory Kisumu strain, and from field-collected individuals were confronted to combinations of stimuli comprising calf odour, human odour and outdoor air. In dual-choice tests, field mosquitoes chose human odour over calf odour, outdoor air over calf odour and responded equally to human and outdoor air, while laboratory mosquitoes responded equally to human and calf odour, human odour over outdoor air and calf odour over outdoor air. Overall, no effect of CO(2) exhaled by humans and calves neither on the proportion of activated mosquitoes nor on the relative attractiveness to odour stimuli was found. We report for the first time an intraspecific variation in host-odour responses. This study clearly suggests that there may be genetic polymorphism underlying host preference and emphasizes that the highly anthropophilic label given to An. gambiae s.s. must be carefully interpreted and refer to populations rather than the whole sibling species.


Asunto(s)
Anopheles/fisiología , Insectos Vectores/fisiología , Odorantes , Animales , Evolución Biológica , Dióxido de Carbono , Bovinos , Conducta Alimentaria/fisiología , Interacciones Huésped-Parásitos , Humanos , Malaria
19.
Parasit Vectors ; 12(1): 81, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755268

RESUMEN

BACKGROUND: To develop an efficient sterile insect technique (SIT) programme, the number of sterile males to release, along with the spatial and temporal pattern of their release, has to be determined. Such parameters could be estimated from a reliable estimation of the wild population density (and its temporal variation) in the area to treat. Here, a series of mark-release-recapture experiments using laboratory-reared and field-derived Aedes albopictus males were carried out in Duparc, a selected pilot site for the future application of SIT in the north of La Reunion Island. METHODS: The dispersal, longevity of marked males and seasonal fluctuations in the population size of native mosquitoes were determined from the ratio of marked to unmarked males caught in mice-baited BG-Sentinel traps. The study was conducted during periods of declining population abundance (April), lowest abundance (September) and highest abundance (December). RESULTS: According to data collected in the first 4 days post-release, the Lincoln index estimated population size as quite variable, ranging from 5817 in April, to 639 in September and 5915 in December. Calculations of daily survival probability to 4 days after release for field and laboratory males were 0.91 and 0.98 in April, respectively, and 0.88 and 0.84 in September, respectively. The mean distance travelled (MDT) of released field males were 46 m, 67 m and 37 m for December, April and September experiments, respectively. For released laboratory males, the MDT was 65 m and 42 m in April and September, respectively. CONCLUSIONS: Theoretically, the most efficient release programme should be started in July/August when the mosquito population size is the lowest (c.600 wild males/ha relative to 5000 wild males estimated for December and April), with a weekly release of 6000 males/ha. The limited dispersal of Ae. albopictus males highlights the nessecity for the widespread release of sterile males over multiple sites and in a field setting to avoid topographical barriers and anthropogenic features that may block the migration of the released sterile male mosquitoes.


Asunto(s)
Aedes/fisiología , Infertilidad Masculina , Control de Mosquitos/métodos , Estaciones del Año , Conducta Sexual Animal , Animales , Longevidad , Masculino , Proyectos Piloto , Densidad de Población , Reunión
20.
Insects ; 10(8)2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31405080

RESUMEN

For the production of several hundred thousands of Aedes albopictus sterile males for the implementation of a Sterile Insect Technique (SIT) program, no costly mass-rearing equipment is needed during the initial phases, as optimized rearing at laboratory scale can be sufficient for the first steps. The aim of this study was to maximize the egg production by optimizing adult rearing methods for Ae. albopictus. The effect of parameters such as male/female ratio, density of adults, membrane type for blood feeding, quantity of blood delivered, continuous or discontinuous blood feeding, and surface of substrates for egg laying on overall egg production was tested to find optimized conditions. Based on the number of eggs produced per cage in response to the parameters tested, the optimum cage set-up was seen to be 1500 adults in a 30 × 30 × 30 cm cage with a male/female sex ratio of 1:3, fed by fresh bovine blood for periods of 30 min using a cellulose membrane covering a 10 cm stainless steel plate heated by a Hemotek device, and the provision of five oviposition cups to collect eggs. With this set-up, production per cage can reach a maximum of 35,000 eggs per week.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA