Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Oncogene ; 40(32): 5066-5080, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34021259

RESUMEN

Intratumoral heterogeneity is a characteristic of glioblastomas that contain an intermixture of cell populations displaying different glioblastoma subtype gene expression signatures. Proportions of these populations change during tumor evolution, but the occurrence and regulation of glioblastoma subtype transition is not well described. To identify regulators of glioblastoma subtypes we utilized a combination of in vitro experiments and in silico analyses, using experimentally generated as well as publicly available data. Through this combined approach SOX2 was identified to confer a proneural glioblastoma subtype gene expression signature. SFRP2 was subsequently identified as a SOX2-antagonist, able to induce a mesenchymal glioblastoma subtype signature. A subset of patient glioblastoma samples with high SFRP2 and low SOX2 expression was particularly enriched with mesenchymal subtype samples. Phenotypically, SFRP2 decreased tumor sphere formation, stemness as assessed by limiting dilution assay, and overall cell proliferation but increased cell motility, whereas SOX2 induced the opposite effects. Furthermore, an SFRP2/non-canonical-WNT/KLF4/PDGFR/phospho-AKT/SOX2 signaling axis was found to be involved in the mesenchymal transition. Analysis of human tumor tissue spatial gene expression patterns showed distinct expression of SFRP2- and SOX2-correlated genes in vascular and cellular areas, respectively. Finally, conditioned media from SFRP2 overexpressing cells increased CD206 on macrophages. Together, these findings present SFRP2 as a SOX2-antagonist with the capacity to induce a mesenchymal subtype transition in glioma cells located in vascular tumor areas, highlighting its role in glioblastoma tumor evolution and intratumoral heterogeneity.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/etiología , Glioblastoma/metabolismo , Proteínas de la Membrana/genética , Factores de Transcripción SOXB1/genética , Proteínas Portadoras , Línea Celular Tumoral , Perfilación de la Expresión Génica , Glioblastoma/patología , Humanos , Factor 4 Similar a Kruppel/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Proteínas de la Membrana/metabolismo , Especificidad de Órganos , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal
2.
Cancer Res ; 78(20): 5901-5916, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30135192

RESUMEN

The homeodomain transcription factor PROX1 has been linked to several cancer types, including gliomas, but its functions remain to be further elucidated. Here we describe a functional role and the prognostic value of PROX1 in glioblastoma. Low expression of PROX1 correlated with poor overall survival and the mesenchymal glioblastoma subtype signature. The latter finding was recapitulated in vitro, where suppression or overexpression of PROX1 in glioma cell cultures transitioned cells to a mesenchymal or to a nonmesenchymal glioblastoma gene expression signature, respectively. PROX1 modulation affected proliferation rates that coincided with changes in protein levels of CCNA1 and CCNE1 as well as the cyclin inhibitors CDKN1A, CDKN1B, and CDKN1C. Overexpression of SOX2 increased PROX1 expression, but treatment with a CDK2 inhibitor subsequently decreased PROX1 expression, which was paralleled by decreased SOX2 levels. The THRAP3 protein was a novel binding partner for PROX1, and suppression of THRAP3 increased both transcript and protein levels of PROX1. Together, these findings highlight the prognostic value of PROX1 and its role as a regulator of glioblastoma gene expression subtypes, intratumoral heterogeneity, proliferation, and cell-cycle control.Significance: These findings demonstrate the role and prognostic value of PROX1 in glioblastomas; low PROX1 levels correlate with a mesenchymal gene expression subtype and shorter survival in glioblastoma tumors. Cancer Res; 78(20); 5901-16. ©2018 AACR.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Supervivencia sin Enfermedad , Glioma/metabolismo , Humanos , Espectrometría de Masas , Mesodermo/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Pronóstico , ARN Interferente Pequeño/metabolismo , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/metabolismo , Resultado del Tratamiento
3.
Int J Oncol ; 48(4): 1313-24, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26892688

RESUMEN

Ribosomes are cellular machines essential for protein synthesis. The biogenesis of ribosomes is a highly complex and energy consuming process that initiates in the nucleolus. Recently, a series of studies applying whole-exome or whole-genome sequencing techniques have led to the discovery of ribosomal protein gene mutations in different cancer types. Mutations in ribosomal protein genes have for example been found in endometrial cancer (RPL22), T-cell acute lymphoblastic leukemia (RPL10, RPL5 and RPL11), chronic lymphocytic leukemia (RPS15), colorectal cancer (RPS20), and glioma (RPL5). Moreover, patients suffering from Diamond-Blackfan anemia, a bone marrow failure syndrome caused by mutant ribosomal proteins are also at higher risk for developing leukemia, or solid tumors. Different experimental models indicate potential mechanisms whereby ribosomal proteins may initiate cancer development. In particular, deregulation of the p53 tumor suppressor network and altered mRNA translation are mechanisms likely to be involved. We envisage that changes in expression and the occurrence of ribosomal protein gene mutations play important roles in cancer development. Ribosome biology constitutes a re-emerging vital area of basic and translational cancer research.


Asunto(s)
Carcinogénesis/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Ribosómicas/genética , Proteína p53 Supresora de Tumor/genética , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patología , Redes Reguladoras de Genes/genética , Humanos , Mutación , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Ribosomas/genética
5.
Cancer Biol Ther ; 15(11): 1499-514, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482947

RESUMEN

Mechanistic target of rapamycin (mTOR) is a master regulator of cell growth through its ability to stimulate ribosome biogenesis and mRNA translation. In contrast, the p53 tumor suppressor negatively controls cell growth and is activated by a wide range of insults to the cell. The mTOR and p53 signaling pathways are connected by a number of different mechanisms. Chemotherapeutics that inhibit ribosome biogenesis often induce nucleolar stress and activation of p53. Here we have investigated how the p53 response to nucleolar stress is affected by simultaneous mTOR inhibition in osteosarcoma and glioma cell lines. We found that inhibitors of the mTOR pathway including rapamycin, wortmannin, and caffeine blunted the p53 response to nucleolar stress induced by actinomycin D. Synthetic inhibitors of mTOR (temsirolimus, LY294.002 and PP242) also impaired actinomycin D triggered p53 stabilization and induction of p21. Ribosomal protein (RPL11) is known to be required for p53 protein stabilization following nucleolar stress. Treatment of cells with mTOR inhibitors may lead to reduced synthesis of RPL11 and thereby destabilize p53. We found that rapamycin mimicked the effect of RPL11 depletion in terms of blunting the p53 response to nucleolar stress. However, the extent to which the levels of p53 and RPL11 were reduced by rapamycin varied between cell lines. Additional mechanisms whereby rapamycin blunts the p53 response to nucleolar stress are likely to be involved. Indeed, rapamycin increased the levels of endogenous MDM2 despite inhibition of its phosphorylation at Ser-166. Our findings may have implications for the design of combinatorial cancer treatments with mTOR pathway inhibitors.


Asunto(s)
Nucléolo Celular/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Ribosómicas/metabolismo , Estrés Fisiológico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dactinomicina/farmacología , Humanos , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Estrés Fisiológico/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA