Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Res Med Sci ; 20(3): 214-23, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26109965

RESUMEN

BACKGROUND: Coronary heart diseases/coronary artery diseases (CHDs/CAD), the most common form of cardiovascular disease (CVD), are a major cause for death and disability in developing/developed countries. CAD risk factors could be detected by physicians to prevent the CAD occurrence in the near future. Invasive coronary angiography, a current diagnosis method, is costly and associated with morbidity and mortality in CAD patients. The aim of this study was to design a computer-based noninvasive CAD diagnosis system with clinically interpretable rules. MATERIALS AND METHODS: In this study, the Cleveland CAD dataset from the University of California UCI (Irvine) was used. The interval-scale variables were discretized, with cut points taken from the literature. A fuzzy rule-based system was then formulated based on a neuro-fuzzy classifier (NFC) whose learning procedure was speeded up by the scaled conjugate gradient algorithm. Two feature selection (FS) methods, multiple logistic regression (MLR) and sequential FS, were used to reduce the required attributes. The performance of the NFC (without/with FS) was then assessed in a hold-out validation framework. Further cross-validation was performed on the best classifier. RESULTS: In this dataset, 16 complete attributes along with the binary CHD diagnosis (gold standard) for 272 subjects (68% male) were analyzed. MLR + NFC showed the best performance. Its overall sensitivity, specificity, accuracy, type I error (α) and statistical power were 79%, 89%, 84%, 0.1 and 79%, respectively. The selected features were "age and ST/heart rate slope categories," "exercise-induced angina status," fluoroscopy, and thallium-201 stress scintigraphy results. CONCLUSION: The proposed method showed "substantial agreement" with the gold standard. This algorithm is thus, a promising tool for screening CAD patients.

2.
Artif Intell Med ; 154: 102922, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38924864

RESUMEN

Characterization of lung sounds (LS) is indispensable for diagnosing respiratory pathology. Although conventional neural networks (NNs) have been widely employed for the automatic diagnosis of lung sounds, deep neural networks can potentially be more useful than conventional NNs by allowing accurate classification without requiring preprocessing and feature extraction. Utilizing the long short-term memory (LSTM) layers to reveal the sequence-based properties of the LS time series, a novel architecture consisting of a cascade of convolutional long short-term memory (ConvLSTM) and LSTM layers, namely ConvLSNet is developed, which permits highly accurate diagnosis of pulmonary disease states. By modeling the multichannel lung sounds through the ConvLSTM layer, the proposed ConvLSNet architecture can concurrently deal with the spatial and temporal properties of the six-channel LS recordings without heavy preprocessing or data transformation. Notably, the proposed model achieves a classification accuracy of 97.4 % based on LS data corresponding to three pulmonary conditions, namely asthma, COPD, and the healthy state. Compared with architectures consisting exclusively of CNN or LSTM layers, as well as those employing a cascade integration of 2DCNN and LSTM layers, the proposed ConvLSNet architecture exhibited the highest classification accuracy, while imposing the lowest computational cost as quantified by the number of parameters, training time, and learning rate.

3.
IEEE Trans Med Imaging ; PP2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959140

RESUMEN

One of the primary sources of suboptimal image quality in ultrasound imaging is phase aberration. It is caused by spatial changes in sound speed over a heterogeneous medium, which disturbs the transmitted waves and prevents coherent summation of echo signals. Obtaining non-aberrated ground truths in real-world scenarios can be extremely challenging, if not impossible. This challenge hinders the performance of deep learning-based techniques due to the domain shift between simulated and experimental data. Here, for the first time, we propose a deep learning-based method that does not require ground truth to correct the phase aberration problem and, as such, can be directly trained on real data. We train a network wherein both the input and target output are randomly aberrated radio frequency (RF) data. Moreover, we demonstrate that a conventional loss function such as mean square error is inadequate for training such a network to achieve optimal performance. Instead, we propose an adaptive mixed loss function that employs both B-mode and RF data, resulting in more efficient convergence and enhanced performance. Finally, we publicly release our dataset, comprising over 180,000 aberrated single plane-wave images (RF data), wherein phase aberrations are modeled as near-field phase screens. Although not utilized in the proposed method, each aberrated image is paired with its corresponding aberration profile and the non-aberrated version, aiming to mitigate the data scarcity problem in developing deep learning-based techniques for phase aberration correction. Source code and trained model are also available along with the dataset at http://code.sonography.ai/main-aaa.

4.
IEEE Trans Biomed Eng ; 70(9): 2552-2563, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37028332

RESUMEN

OBJECTIVE: Breast cancer treatment often causes the removal of or damage to lymph nodes of the patient's lymphatic drainage system. This side effect is the origin of Breast Cancer-Related Lymphedema (BCRL), referring to a noticeable increase in excess arm volume. Ultrasound imaging is a preferred modality for the diagnosis and progression monitoring of BCRL because of its low cost, safety, and portability. As the affected and unaffected arms look similar in B-mode ultrasound images, the thickness of the skin, subcutaneous fat, and muscle have been shown to be important biomarkers for this task. The segmentation masks are also helpful in monitoring the longitudinal changes in morphology and mechanical properties of tissue layers. METHODS: For the first time, a publicly available ultrasound dataset containing the Radio-Frequency (RF) data of 39 subjects and manual segmentation masks by two experts, are provided. Inter- and intra-observer reproducibility studies performed on the segmentation maps show a high Dice Score Coefficient (DSC) of 0.94±0.08 and 0.92±0.06, respectively. Gated Shape Convolutional Neural Network (GSCNN) is modified for precise automatic segmentation of tissue layers, and its generalization performance is improved by the CutMix augmentation strategy. RESULTS: We got an average DSC of 0.87±0.11 on the test set, which confirms the high performance of the method. CONCLUSION: Automatic segmentation can pave the way for convenient and accessible staging of BCRL, and our dataset can facilitate development and validation of those methods. SIGNIFICANCE: Timely diagnosis and treatment of BCRL have crucial importance in preventing irreversible damage.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Linfedema , Humanos , Femenino , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Brazo , Reproducibilidad de los Resultados , Algoritmos , Ultrasonografía , Linfedema/etiología , Linfedema/patología , Procesamiento de Imagen Asistido por Computador/métodos
5.
Ultrasonics ; 125: 106778, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35728310

RESUMEN

This paper presents a novel beamforming approach based on deep learning to get closer to the ideal Point Spread Function (PSF) in Plane-Wave Imaging (PWI). The proposed approach is designed to reconstruct a high-quality version of Tissue Reflectivity Function (TRF) from echo traces acquired by transducer elements using only a single plane-wave transmission. In this approach, first, a model for the TRF is introduced by setting the imaging PSF as an isotropic (i.e., circularly symmetric) 2D Gaussian kernel convolved with a cosine function. Then, a mapping function between the pre-beamformed Radio-Frequency (RF) channel data and the proposed output is constructed using deep learning. Network architecture contains multi-resolution decomposition and reconstruction using wavelet transform for effective recovery of high-frequency content of the desired output. We exploit step by step training from coarse (mean square error) to fine (ℓ0.2) loss functions. The proposed method is trained on 1174 simulation ultrasound data with the ground-truth echogenicity map extracted from real photographic images. The performance of the trained network is evaluated on the publicly available simulation and in vivo test data without any further fine-tuning. Simulation test results show an improvement of 37.5% and 65.8% in terms of axial and lateral resolution as compared to Delay-And-Sum (DAS) results, respectively. The contrast is also improved by 33.7% in comparison to DAS. Furthermore, the reconstructed in vivo images confirm that the trained mapping function does not need any fine-tuning in the new domain. Therefore, the proposed approach maintains high resolution, contrast, and framerate simultaneously.


Asunto(s)
Algoritmos , Ondas de Radio , Simulación por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Ultrasonografía/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-35969567

RESUMEN

During the past few years, inverse problem formulations of ultrasound beamforming have attracted growing interest. They usually pose beamforming as a minimization problem of a fidelity term resulting from the measurement model plus a regularization term that enforces a certain class on the resulting image. Here, we take advantage of alternating direction method of multipliers to propose a flexible framework in which each term is optimized separately. Furthermore, the proposed beamforming formulation is extended to replace the regularization term with a denoising algorithm, based on the recent approaches called plug-and-play (PnP) and regularization by denoising (RED). Such regularizations are shown in this work to better preserve speckle texture, an important feature in ultrasound imaging, than sparsity-based approaches previously proposed in the literature. The efficiency of the proposed methods is evaluated on simulations, real phantoms, and in vivo data available from a plane-wave imaging challenge in medical ultrasound. Furthermore, a comprehensive comparison with existing ultrasound beamforming methods is also provided. These results show that the RED algorithm gives the best image quality in terms of contrast index while preserving the speckle statistics.


Asunto(s)
Algoritmos , Fantasmas de Imagen , Ultrasonografía/métodos
7.
Comput Methods Programs Biomed ; 203: 106036, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33756188

RESUMEN

BACKGROUND AND OBJECTIVE: Beamforming in coherent plane-wave compounding (CPWC) is an essential step in maintaining high resolution, contrast and framerate. Adaptive methods have been designed to achieve this goal by estimating the apodization weights from echo traces acquired by several transducer elements. METHODS: Herein, we formulate plane-wave beamforming as a blind source separation problem, where the output of each transducer element is considered as a non-independent observation of the field. As such, beamforming can be formulated as the estimation of an independent component out of the observations. We then adapt the independent component analysis (ICA) algorithm to solve this problem and reconstruct the final image. RESULTS: The proposed method is evaluated on a set of simulations, real phantom, and in vivo data available from the plane-wave imaging challenge in medical ultrasound. Moreover, the results are compared with other well-known adaptive methods. CONCLUSIONS: Results demonstrate that the proposed method simultaneously improves the resolution and contrast.


Asunto(s)
Algoritmos , Transductores , Fantasmas de Imagen , Proyectos de Investigación , Ultrasonografía
8.
Artículo en Inglés | MEDLINE | ID: mdl-34224351

RESUMEN

Deep learning for ultrasound image formation is rapidly garnering research support and attention, quickly rising as the latest frontier in ultrasound image formation, with much promise to balance both image quality and display speed. Despite this promise, one challenge with identifying optimal solutions is the absence of unified evaluation methods and datasets that are not specific to a single research group. This article introduces the largest known international database of ultrasound channel data and describes the associated evaluation methods that were initially developed for the challenge on ultrasound beamforming with deep learning (CUBDL), which was offered as a component of the 2020 IEEE International Ultrasonics Symposium. We summarize the challenge results and present qualitative and quantitative assessments using both the initially closed CUBDL evaluation test dataset (which was crowd-sourced from multiple groups around the world) and additional in vivo breast ultrasound data contributed after the challenge was completed. As an example quantitative assessment, single plane wave images from the CUBDL Task 1 dataset produced a mean generalized contrast-to-noise ratio (gCNR) of 0.67 and a mean lateral resolution of 0.42 mm when formed with delay-and-sum beamforming, compared with a mean gCNR as high as 0.81 and a mean lateral resolution as low as 0.32 mm when formed with networks submitted by the challenge winners. We also describe contributed CUBDL data that may be used for training of future networks. The compiled database includes a total of 576 image acquisition sequences. We additionally introduce a neural-network-based global sound speed estimator implementation that was necessary to fairly evaluate the results obtained with this international database. The integration of CUBDL evaluation methods, evaluation code, network weights from the challenge winners, and all datasets described herein are publicly available (visit https://cubdl.jhu.edu for details).


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Fantasmas de Imagen , Ultrasonografía
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2035-2038, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018404

RESUMEN

In ultrasound imaging, there is a trade-off between imaging depth and axial resolution because of physical limitations. Increasing the center frequency of the transmitted ultrasound wave improves the axial resolution of resulting image. However, High Frequency (HF) ultrasound has a shallower depth of penetration. Herein, we propose a novel method based on Generative Adversarial Network (GAN) for achieving a high axial resolution without a reduction in imaging depth. Results on simulated phantoms show that a mapping function between Low Frequency (LF) and HF ultrasound images can be constructed.


Asunto(s)
Fantasmas de Imagen , Ultrasonografía
10.
Artif Intell Med ; 97: 143-151, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30587391

RESUMEN

Continuous cuffless blood pressure (BP) monitoring has attracted much interest in finding the ideal treatment of diseases and the prevention of premature death. This paper presents a novel dynamical method, based on pulse transit time (PTT) and photoplethysmogram intensity ratio (PIR), for the continuous cuffless BP estimation. By taking the advantages of both the modeling and the prediction approaches, the proposed framework effectively estimates diastolic BP (DBP), mean BP (BP), and systolic BP (SBP). Adding past states of the cardiopulmonary system as well as present states of the cardiac system to our model caused two main improvements. First, high accuracy of the method in the beat to beat BP estimation. Second, notwithstanding noticeable BP changes, the performance of the model is preserved over time. The experimental setup includes comparative studies on a large, standard dataset. Moreover, the proposed method outperformed the most recent and cited algorithms with improved accuracy.


Asunto(s)
Presión Sanguínea , Electrocardiografía , Fotopletismografía/métodos , Algoritmos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA