Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 20(2): e1011133, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38412146

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1010871.].

2.
Proc Natl Acad Sci U S A ; 121(19): e2315780121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687793

RESUMEN

Measuring inbreeding and its consequences on fitness is central for many areas in biology including human genetics and the conservation of endangered species. However, there is no consensus on the best method, neither for quantification of inbreeding itself nor for the model to estimate its effect on specific traits. We simulated traits based on simulated genomes from a large pedigree and empirical whole-genome sequences of human data from populations with various sizes and structures (from the 1,000 Genomes project). We compare the ability of various inbreeding coefficients ([Formula: see text]) to quantify the strength of inbreeding depression: allele-sharing, two versions of the correlation of uniting gametes which differ in the weight they attribute to each locus and two identical-by-descent segments-based estimators. We also compare two models: the standard linear model and a linear mixed model (LMM) including a genetic relatedness matrix (GRM) as random effect to account for the nonindependence of observations. We find LMMs give better results in scenarios with population or family structure. Within the LMM, we compare three different GRMs and show that in homogeneous populations, there is little difference among the different [Formula: see text] and GRM for inbreeding depression quantification. However, as soon as a strong population or family structure is present, the strength of inbreeding depression can be most efficiently estimated only if i) the phenotypes are regressed on [Formula: see text] based on a weighted version of the correlation of uniting gametes, giving more weight to common alleles and ii) with the GRM obtained from an allele-sharing relatedness estimator.


Asunto(s)
Depresión Endogámica , Modelos Genéticos , Humanos , Linaje , Genética de Población/métodos , Endogamia , Alelos
3.
PLoS Genet ; 19(11): e1010871, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38011288

RESUMEN

Being able to properly quantify genetic differentiation is key to understanding the evolutionary potential of a species. One central parameter in this context is FST, the mean coancestry within populations relative to the mean coancestry between populations. Researchers have been estimating FST globally or between pairs of populations for a long time. More recently, it has been proposed to estimate population-specific FST values, and population-pair mean relative coancestry. Here, we review the several definitions and estimation methods of FST, and stress that they provide values relative to a reference population. We show the good statistical properties of an allele-sharing, method of moments based estimator of FST (global, population-specific and population-pair) under a very general model of population structure. We point to the limitation of existing likelihood and Bayesian estimators when the populations are not independent. Last, we show that recent attempts to estimate absolute, rather than relative, mean coancestry fail to do so.


Asunto(s)
Evolución Biológica , Modelos Genéticos , Alelos , Teorema de Bayes , Flujo Genético , Genética de Población
4.
Proc Biol Sci ; 291(2014): 20231995, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196365

RESUMEN

The maintenance of colour variation in wild populations has long fascinated evolutionary biologists, although most studies have focused on discrete traits exhibiting rather simple inheritance patterns and genetic architectures. However, the study of continuous colour traits and their potentially oligo- or polygenic genetic bases remains rare in wild populations. We studied the genetics of the continuously varying white-to-rufous plumage coloration of the European barn owl (Tyto alba) using a genome-wide association approach on the whole-genome data of 75 individuals. We confirmed a mutation at the melanocortin-1-receptor gene (MC1R) is involved in the coloration and identified two new regions, located in super-scaffolds 9 and 42. The combination of the three regions explains most of the colour variation (80.37%, 95% credible interval 58.45-100%). One discovered region, located in the sex chromosome, differs between the most extreme colorations in owls sharing a specific MC1R genotype. This region may play a role in the colour sex dimorphism of this species, possibly in interaction with the autosomal MC1R. We thus provide insights into the genetic architecture of continuous colour variation, pointing to an oligogenic basis with potential epistatic effects among loci that should aid future studies understanding how continuous colour variation is maintained in nature.


Asunto(s)
Estrigiformes , Humanos , Animales , Estrigiformes/genética , Color , Estudio de Asociación del Genoma Completo , Genómica , Genotipo
5.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34893883

RESUMEN

The combined actions of climatic variations and landscape barriers shape the history of natural populations. When organisms follow their shifting niches, obstacles in the landscape can lead to the splitting of populations, on which evolution will then act independently. When two such populations are reunited, secondary contact occurs in a broad range of admixture patterns, from narrow hybrid zones to the complete dissolution of lineages. A previous study suggested that barn owls colonized the Western Palearctic after the last glaciation in a ring-like fashion around the Mediterranean Sea, and conjectured an admixture zone in the Balkans. Here, we take advantage of whole-genome sequences of 94 individuals across the Western Palearctic to reveal the complex history of the species in the region using observational and modeling approaches. Even though our results confirm that two distinct lineages colonized the region, one in Europe and one in the Levant, they suggest that it predates the last glaciation and identify a secondary contact zone between the two in Anatolia. We also show that barn owls recolonized Europe after the glaciation from two distinct glacial refugia: a previously identified western one in Iberia and a new eastern one in Italy. Both glacial lineages now communicate via eastern Europe, in a wide and permeable contact zone. This complex history of populations enlightens the taxonomy of Tyto alba in the region, highlights the key role played by mountain ranges and large water bodies as barriers and illustrates the power of population genomics in uncovering intricate demographic patterns.


Asunto(s)
Estrigiformes , Animales , Europa (Continente) , Variación Genética , Haplotipos , Filogenia , Filogeografía , Refugio de Fauna , Estrigiformes/genética
6.
Mol Ecol ; 31(2): 482-497, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34695244

RESUMEN

The climate fluctuations of the Quaternary shaped the movement of species in and out of glacial refugia. In Europe, the majority of species followed one of the described traditional postglacial recolonization routes from the southern peninsulas towards the north. Like most organisms, barn owls are assumed to have colonized the British Isles by crossing over Doggerland, a land bridge that connected Britain to northern Europe. However, while they are dark rufous in northern Europe, barn owls in the British Isles are conspicuously white, a contrast that could suggest selective forces are at play on the islands. Yet, our analysis of known candidate genes involved in coloration found no signature of selection. Instead, using whole genome sequences and species distribution modelling, we found that owls colonised the British Isles soon after the last glaciation, directly from a white coloured refugium in the Iberian Peninsula, before colonising northern Europe. They would have followed a hitherto unknown post-glacial colonization route to the Isles over a westwards path of suitable habitat in now submerged land in the Bay of Biscay, thus not crossing Doggerland. As such, they inherited the white colour of their Iberian founders and maintained it through low gene flow with the mainland that prevents the import of rufous alleles. Thus, we contend that neutral processes probably explain this contrasting white colour compared to continental owls. With the barn owl being a top predator, we expect future research will show this unanticipated route was used by other species from its paleo community.


Asunto(s)
Estrigiformes , Animales , Color , Ecosistema , Europa (Continente) , Refugio de Fauna , Estrigiformes/genética
7.
Mol Ecol ; 31(5): 1375-1388, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34894026

RESUMEN

The study of insular populations was key in the development of evolutionary theory. The successful colonisation of an island depends on the geographic context, and specific characteristics of the organism and the island, but also on stochastic processes. As a result, apparently identical islands may harbour populations with contrasting histories. Here, we use whole genome sequences of 65 barn owls to investigate the patterns of inbreeding and genetic diversity of insular populations in the eastern Mediterranean Sea. We focus on Crete and Cyprus, islands with similar size, climate and distance to mainland, that provide natural replicates for a comparative analysis of the impacts of microevolutionary processes on isolated populations. We show that barn owl populations from each island have a separate origin, Crete being genetically more similar to other Greek islands and mainland Greece, and Cyprus more similar to the Levant. Further, our data show that their respective demographic histories following colonisation were also distinct. On the one hand, Crete harbours a small population and maintains very low levels of gene flow with neighbouring populations. This has resulted in low genetic diversity, strong genetic drift, increased relatedness in the population and remote inbreeding. Cyprus, on the other hand, appears to maintain enough gene flow with the mainland to avoid such an outcome. Our study provides a comparative population genomic analysis of the effects of neutral processes on a classical island-mainland model system. It provides empirical evidence for the role of stochastic processes in determining the fate of diverging isolated populations.


Asunto(s)
Estrigiformes , Animales , Evolución Biológica , Flujo Génico , Flujo Genético , Variación Genética/genética , Genómica , Estrigiformes/genética
8.
Heredity (Edinb) ; 128(1): 1-10, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34824382

RESUMEN

The two alleles an individual carries at a locus are identical by descent (ibd) if they have descended from a single ancestral allele in a reference population, and the probability of such identity is the inbreeding coefficient of the individual. Inbreeding coefficients can be predicted from pedigrees with founders constituting the reference population, but estimation from genetic data is not possible without data from the reference population. Most inbreeding estimators that make explicit use of sample allele frequencies as estimates of allele probabilities in the reference population are confounded by average kinships with other individuals. This means that the ranking of those estimates depends on the scope of the study sample and we show the variation in rankings for common estimators applied to different subdivisions of 1000 Genomes data. Allele-sharing estimators of within-population inbreeding relative to average kinship in a study sample, however, do have invariant rankings across all studies including those individuals. They are unbiased with a large number of SNPs. We discuss how allele sharing estimates are the relevant quantities for a range of empirical applications.


Asunto(s)
Endogamia , Polimorfismo de Nucleótido Simple , Alelos , Frecuencia de los Genes , Humanos , Modelos Genéticos , Linaje
9.
Heredity (Edinb) ; 129(5): 281-294, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36175501

RESUMEN

Islands, and the particular organisms that populate them, have long fascinated biologists. Due to their isolation, islands offer unique opportunities to study the effect of neutral and adaptive mechanisms in determining genomic and phenotypical divergence. In the Canary Islands, an archipelago rich in endemics, the barn owl (Tyto alba), present in all the islands, is thought to have diverged into a subspecies (T. a. gracilirostris) on the eastern ones, Fuerteventura and Lanzarote. Taking advantage of 40 whole-genomes and modern population genomics tools, we provide the first look at the origin and genetic makeup of barn owls of this archipelago. We show that the Canaries hold diverse, long-standing and monophyletic populations with a neat distinction of gene pools from the different islands. Using a new method, less sensitive to structure than classical FST, to detect regions involved in local adaptation to insular environments, we identified a haplotype-like region likely under selection in all Canaries individuals and genes in this region suggest morphological adaptations to insularity. In the eastern islands, where the subspecies is present, genomic traces of selection pinpoint signs of adapted body proportions and blood pressure, consistent with the smaller size of this population living in a hot arid climate. In turn, genomic regions under selection in the western barn owls from Tenerife showed an enrichment in genes linked to hypoxia, a potential response to inhabiting a small island with a marked altitudinal gradient. Our results illustrate the interplay of neutral and adaptive forces in shaping divergence and early onset speciation.


Asunto(s)
Estrigiformes , Animales , Estrigiformes/genética , España , Genoma , Genómica , Adaptación Fisiológica/genética
10.
Bioinformatics ; 35(5): 886-888, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30816926

RESUMEN

SUMMARY: QuantiNemo 2 is a stochastic simulation program for quantitative population genetics. It was developed to investigate the effects of selection, mutation, recombination and drift on quantitative traits and neutral markers in structured populations connected by migration and located in heterogeneous habitats. A specific feature is that it allows to switch between an individual-based full-featured mode and a population-based faster mode. Several demographic, genetic and selective parameters can be fine-tuned in QuantiNemo 2: population, selection, trait(s) architecture, genetic map for QTL and/or markers, environment, demography and mating system are the main features. AVAILABILITY AND IMPLEMENTATION: QuantiNemo 2 is a C++ program with a source code available under the GNU General Public License version 3. Executables are provided for Windows, MacOS and Linux platforms, together with a comprehensive manual and tutorials illustrating its flexibility. The executable, manual and tutorial can be found on the website www2.unil.ch/popgen/softwares/quantinemo/, while the source code and user support are given through GitHub: github.com/jgx65/quantinemo. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genética de Población , Programas Informáticos , Demografía , Humanos , Fenotipo
11.
Glob Chang Biol ; 26(12): 6715-6728, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32866994

RESUMEN

Assessing the degree to which climate explains the spatial distributions of different taxonomic and functional groups is essential for anticipating the effects of climate change on ecosystems. Most effort so far has focused on above-ground organisms, which offer only a partial view on the response of biodiversity to environmental gradients. Here including both above- and below-ground organisms, we quantified the degree of topoclimatic control on the occurrence patterns of >1,500 taxa and phylotypes along a c. 3,000 m elevation gradient, by fitting species distribution models. Higher model performances for animals and plants than for soil microbes (fungi, bacteria and protists) suggest that the direct influence of topoclimate is stronger on above-ground species than on below-ground microorganisms. Accordingly, direct climate change effects are predicted to be stronger for above-ground than for below-ground taxa, whereas factors expressing local soil microclimate and geochemistry are likely more important to explain and forecast the occurrence patterns of soil microbiota. Detailed mapping and future scenarios of soil microclimate and microhabitats, together with comparative studies of interacting and ecologically dependent above- and below-ground biota, are thus needed to understand and realistically forecast the future distribution of ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Cambio Climático , Microclima , Suelo , Microbiología del Suelo
12.
Heredity (Edinb) ; 122(3): 305-314, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30006569

RESUMEN

Non-random gene flow is a widely neglected force in evolution and ecology. This genotype-dependent dispersal is difficult to assess, yet can impact the genetic variation of natural populations and their fitness. In this work, we demonstrate a high immigration rate of barn owls (Tyto alba) inside a Swiss population surveyed during 15 years. Using ten microsatellite loci as an indirect method to characterize dispersal, two-third of the genetic tests failed to detect a female-biased dispersal, and Monte Carlo simulations confirmed a low statistical power to detect sex-biased dispersal in case of high dispersal rate of both sexes. The capture-recapture data revealed a female-biased dispersal associated with an excess of heterozygote for the melanocortin-1 receptor gene (MC1R), which is responsible for their ventral rufous coloration. Thus, female homozygotes for the MC1RWHITE allele might be negatively selected during dispersal. Despite the higher immigration of females that are heterozygote at MC1R, non-random gene flow should not lead to a migration load regarding this gene because we did not detect an effect of MC1R on survival and reproductive success in our local population. The present study highlights the usefulness of using multiple methods to correctly decrypt dispersal and gene flow. Moreover, despite theoretical expectations, we show that non-random dispersal of particular genotypes does not necessarily lead to migration load in recipient populations.


Asunto(s)
Flujo Génico , Variación Genética , Herencia Materna , Receptor de Melanocortina Tipo 1/genética , Estrigiformes/genética , Migración Animal , Animales , Cruzamiento , Evolución Molecular , Femenino , Genética de Población , Masculino , Repeticiones de Microsatélite , Método de Montecarlo , Densidad de Población , Selección Genética
13.
Mol Ecol ; 27(20): 4121-4135, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30107060

RESUMEN

The concept of kinship permeates many domains of fundamental and applied biology ranging from social evolution to conservation science to quantitative and human genetics. Until recently, pedigrees were the gold standard to infer kinship, but the advent of next-generation sequencing and the availability of dense genetic markers in many species make it a good time to (re)evaluate the usefulness of genetic markers in this context. Using three published data sets where both pedigrees and markers are available, we evaluate two common and a new genetic estimator of kinship. We show discrepancies between pedigree values and marker estimates of kinship and explore via simulations the possible reasons for these. We find these discrepancies are attributable to two main sources: pedigree errors and heterogeneity in the origin of founders. We also show that our new marker-based kinship estimator has very good statistical properties and behaviour and is particularly well suited for situations where the source population is of small size, as will often be the case in conservation biology, and where high levels of kinship are expected, as is typical in social evolution studies.


Asunto(s)
Genética de Población/métodos , Linaje , Marcadores Genéticos , Humanos , Modelos Genéticos
14.
Mol Biol Evol ; 33(5): 1317-36, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26796550

RESUMEN

Clines in chromosomal inversion polymorphisms-presumably driven by climatic gradients-are common but there is surprisingly little evidence for selection acting on them. Here we address this long-standing issue in Drosophila melanogaster by using diagnostic single nucleotide polymorphism (SNP) markers to estimate inversion frequencies from 28 whole-genome Pool-seq samples collected from 10 populations along the North American east coast. Inversions In(3L)P, In(3R)Mo, and In(3R)Payne showed clear latitudinal clines, and for In(2L)t, In(2R)NS, and In(3R)Payne the steepness of the clinal slopes changed between summer and fall. Consistent with an effect of seasonality on inversion frequencies, we detected small but stable seasonal fluctuations of In(2R)NS and In(3R)Payne in a temperate Pennsylvanian population over 4 years. In support of spatially varying selection, we observed that the cline in In(3R)Payne has remained stable for >40 years and that the frequencies of In(2L)t and In(3R)Payne are strongly correlated with climatic factors that vary latitudinally, independent of population structure. To test whether these patterns are adaptive, we compared the amount of genetic differentiation of inversions versus neutral SNPs and found that the clines in In(2L)t and In(3R)Payne are maintained nonneutrally and independent of admixture. We also identified numerous clinal inversion-associated SNPs, many of which exhibit parallel differentiation along the Australian cline and reside in genes known to affect fitness-related traits. Together, our results provide strong evidence that inversion clines are maintained by spatially-and perhaps also temporally-varying selection. We interpret our data in light of current hypotheses about how inversions are established and maintained.


Asunto(s)
Adaptación Biológica/genética , Inversión Cromosómica , Drosophila melanogaster/genética , Animales , Evolución Biológica , Evolución Molecular , Genética de Población/métodos , Desequilibrio de Ligamiento , Masculino , América del Norte , Polimorfismo de Nucleótido Simple
15.
New Phytol ; 214(2): 632-643, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28098948

RESUMEN

Plant interactions with arbuscular mycorrhizal fungi have long attracted interest for their potential to promote more efficient use of mineral resources in agriculture. Their use, however, remains limited by a lack of understanding of the processes that determine the outcome of the symbiosis. In this study, the impact of host genotype on growth response to mycorrhizal inoculation was investigated in a panel of diverse maize lines. A panel of 30 maize lines was evaluated with and without inoculation with arbuscular mycorrhizal fungi. The line Oh43 was identified to show superior response and, along with five other reference lines, was characterized in greater detail in a split-compartment system, using 33 P to quantify mycorrhizal phosphorus uptake. Changes in relative growth indicated variation in host capacity to profit from the symbiosis. Shoot phosphate content, abundance of root-internal and -external fungal structures, mycorrhizal phosphorus uptake, and accumulation of transcripts encoding plant PHT1 family phosphate transporters varied among lines. Superior response in Oh43 is correlated with extensive development of root-external hyphae, accumulation of specific Pht1 transcripts and high phosphorus uptake by mycorrhizal plants. The data indicate that host genetic factors influence fungal growth strategy with an impact on plant performance.


Asunto(s)
Hifa/metabolismo , Micorrizas/metabolismo , Proteínas de Transporte de Fosfato/genética , Fósforo/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/microbiología , Zea mays/genética , Zea mays/microbiología , Biomasa , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Fosfato/metabolismo , Desarrollo de la Planta , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Mol Ecol ; 25(18): 4551-63, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27480981

RESUMEN

Sexual conflict arises when selection in one sex causes the displacement of the other sex from its phenotypic optimum, leading to an inevitable tension within the genome - called intralocus sexual conflict. Although the autosomal melanocortin-1-receptor gene (MC1R) can generate colour variation in sexually dichromatic species, most previous studies have not considered the possibility that MC1R may be subject to sexual conflict. In the barn owl (Tyto alba), the allele MC1RWHITE is associated with whitish plumage coloration, typical of males, and the allele MC1RRUFOUS is associated with dark rufous coloration, typical of females, although each sex can express any phenotype. Because each colour variant is adapted to specific environmental conditions, the allele MC1RWHITE may be more strongly selected in males and the allele MC1RRUFOUS in females. We therefore investigated whether MC1R genotypes are in excess or deficit in male and female fledglings compared with the expected Hardy-Weinberg proportions. Our results show an overall deficit of 7.5% in the proportion of heterozygotes in males and of 12.9% in females. In males, interannual variation in assortative pairing with respect to MC1R explained the year-specific deviations from Hardy-Weinberg proportions, whereas in females, the deficit was better explained by the interannual variation in the probability of inheriting the MC1RWHITE or MC1RRUFOUS allele. Additionally, we observed that sons inherit the MC1RRUFOUS allele from their fathers on average slightly less often than expected under the first Mendelian law. Transmission ratio distortion may be adaptive in this sexually dichromatic species if males and females are, respectively, selected to display white and rufous plumages.


Asunto(s)
Receptor de Melanocortina Tipo 1/genética , Caracteres Sexuales , Estrigiformes/genética , Alelos , Animales , Plumas , Femenino , Genotipo , Masculino , Suiza
17.
Bioinformatics ; 29(10): 1268-74, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23539304

RESUMEN

MOTIVATION: Analysis of millions of pyro-sequences is currently playing a crucial role in the advance of environmental microbiology. Taxonomy-independent, i.e. unsupervised, clustering of these sequences is essential for the definition of Operational Taxonomic Units. For this application, reproducibility and robustness should be the most sought after qualities, but have thus far largely been overlooked. RESULTS: More than 1 million hyper-variable internal transcribed spacer 1 (ITS1) sequences of fungal origin have been analyzed. The ITS1 sequences were first properly extracted from 454 reads using generalized profiles. Then, otupipe, cd-hit-454, ESPRIT-Tree and DBC454, a new algorithm presented here, were used to analyze the sequences. A numerical assay was developed to measure the reproducibility and robustness of these algorithms. DBC454 was the most robust, closely followed by ESPRIT-Tree. DBC454 features density-based hierarchical clustering, which complements the other methods by providing insights into the structure of the data. AVAILABILITY: An executable is freely available for non-commercial users at ftp://ftp.vital-it.ch/tools/dbc454. It is designed to run under MPI on a cluster of 64-bit Linux machines running Red Hat 4.x, or on a multi-core OSX system. CONTACT: dbc454@vital-it.ch or nicolas.guex@isb-sib.ch.


Asunto(s)
Algoritmos , Análisis por Conglomerados , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Reproducibilidad de los Resultados , Microbiología del Suelo
18.
Mol Ecol ; 23(22): 5508-23, 2014 11.
Artículo en Inglés | MEDLINE | ID: mdl-25294501

RESUMEN

Gradients of variation--or clines--have always intrigued biologists. Classically, they have been interpreted as the outcomes of antagonistic interactions between selection and gene flow. Alternatively, clines may also establish neutrally with isolation by distance (IBD) or secondary contact between previously isolated populations. The relative importance of natural selection and these two neutral processes in the establishment of clinal variation can be tested by comparing genetic differentiation at neutral genetic markers and at the studied trait. A third neutral process, surfing of a newly arisen mutation during the colonization of a new habitat, is more difficult to test. Here, we designed a spatially explicit approximate Bayesian computation (ABC) simulation framework to evaluate whether the strong cline in the genetically based reddish coloration observed in the European barn owl (Tyto alba) arose as a by-product of a range expansion or whether selection has to be invoked to explain this colour cline, for which we have previously ruled out the actions of IBD or secondary contact. Using ABC simulations and genetic data on 390 individuals from 20 locations genotyped at 22 microsatellites loci, we first determined how barn owls colonized Europe after the last glaciation. Using these results in new simulations on the evolution of the colour phenotype, and assuming various genetic architectures for the colour trait, we demonstrate that the observed colour cline cannot be due to the surfing of a neutral mutation. Taking advantage of spatially explicit ABC, which proved to be a powerful method to disentangle the respective roles of selection and drift in range expansions, we conclude that the formation of the colour cline observed in the barn owl must be due to natural selection.


Asunto(s)
Evolución Biológica , Genética de Población , Pigmentación/genética , Selección Genética , Estrigiformes/genética , Animales , Teorema de Bayes , Simulación por Computador , Europa (Continente) , Repeticiones de Microsatélite , Modelos Biológicos , Análisis de Secuencia de ADN
19.
Mol Ecol ; 23(20): 5089-101, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25223217

RESUMEN

Extensive gene flow between wheat (Triticum sp.) and several wild relatives of the genus Aegilops has recently been detected despite notoriously high levels of selfing in these species. Here, we assess and model the spread of wheat alleles into natural populations of the barbed goatgrass (Aegilops triuncialis), a wild wheat relative prevailing in the Mediterranean flora. Our sampling, based on an extensive survey of 31 Ae. triuncialis populations collected along a 60 km × 20 km area in southern Spain (Grazalema Mountain chain, Andalousia, totalling 458 specimens), is completed with 33 wheat cultivars representative of the European domesticated pool. All specimens were genotyped with amplified fragment length polymorphism with the aim of estimating wheat admixture levels in Ae. triuncialis populations. This survey first confirmed extensive hybridization and backcrossing of wheat into the wild species. We then used explicit modelling of populations and approximate Bayesian computation to estimate the selfing rate of Ae. triuncialis along with the magnitude, the tempo and the geographical distance over which wheat alleles introgress into Ae. triuncialis populations. These simulations confirmed that extensive introgression of wheat alleles (2.7 × 10(-4) wheat immigrants for each Ae. triuncialis resident, at each generation) into Ae. triuncialis occurs despite a high selfing rate (Fis ≈ 1 and selfing rate = 97%). These results are discussed in the light of risks associated with the release of genetically modified wheat cultivars in Mediterranean agrosystems.


Asunto(s)
Flujo Génico , Hibridación Genética , Poaceae/genética , Triticum/genética , Alelos , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Teorema de Bayes , ADN de Plantas/genética , Genética de Población , Modelos Genéticos , España
20.
Theor Popul Biol ; 93: 75-84, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24560956

RESUMEN

Population genetic differentiation characterizes the repartition of alleles among populations. It is commonly thought that genetic differentiation measures, such as GST and D, should be near zero when allele frequencies are close to their expected value in panmictic populations, and close to one when they are close to their expected value in isolated populations. To analyse those properties, we first derive analytically a reference function f of known parameters that describes how important features of genetic differentiation (e.g. gene diversity, proportion of private alleles, frequency of the most common allele) are close to their expected panmictic and isolation value. We find that the behaviour of function f differs according to three distinct mutation regimes defined by the scaled mutation rate and the number of populations. Then, we compare GST and D to f, and demonstrate that their signal of differentiation strongly depends on the mutation regime. In particular, we show that D captures well the variations of genetic diversity when mutation is weak, otherwise it overestimates it when panmixia is not met. GST detects population differentiation when mutation is intermediate but has a low sensitivity to the variations of genetic diversity when mutation is weak. When mutation is strong the domain of sensitivity of both measures are altered. Finally, we also point out the importance of the number of populations on genetic differentiation measures, and provide recommendations for the use of GST and D.


Asunto(s)
Genética de Población , Frecuencia de los Genes , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA