Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plant Cell Environ ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225339

RESUMEN

Medicago truncatula Nod Factor Perception (MtNFP) plays a role in both the Rhizobium-Legume (RL) symbiosis and plant immunity, and evidence suggests that the immune-related function of MtNFP is relevant for symbiosis. To better understand these roles of MtNFP, we sought to identify new interacting partners. We screened a yeast-2-hybrid cDNA library from Aphanomyces euteiches infected and noninfected M. truncatula roots. The M. truncatula leucine-rich repeat (LRR) receptor-like kinase SUPPRESSOR OF BIR1 (MtSOBIR1) was identified as an interactor of MtNFP and was characterised for kinase activity, and potential roles in symbiosis and plant immunity. We showed that the kinase domain of MtSOBIR1 is active and can transphosphorylate the pseudo-kinase domain of MtNFP. MtSOBIR1 could functionally complement Atsobir1 and Nbsobir1/sobir1-like mutants for defence activation, and Mtsobir1 mutants were defective in immune responses to A. euteiches. For symbiosis, we showed that Mtsobir1 mutant plants had both a strong, early infection defect and defects in the defence suppression in nodules, and both effects were plant genotype- and rhizobial strain-specific. This work highlights a conserved function for MtSOBIR1 in activating defence responses to pathogen attack, and potentially novel symbiotic functions of downregulating defence in association with the control of symbiotic specificity.

2.
Plant Cell Physiol ; 64(7): 746-757, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37098213

RESUMEN

Lysin motif receptor-like kinases (LysM-RLKs) are involved in the perception of chitooligosaccharides (COs) and related lipochitooligosaccharides (LCOs) in plants. Expansion and divergence of the gene family during evolution have led to various roles in symbiosis and defense. By studying proteins of the LYR-IA subclass of LysM-RLKs of the Poaceae, we show here that they are high-affinity LCO-binding proteins with a lower affinity for COs, consistent with a role in LCO perception to establish arbuscular mycorrhiza (AM). In Papilionoid legumes, whole-genome duplication has resulted in two LYR-IA paralogs, MtLYR1 and MtNFP in Medicago truncatula, with MtNFP playing an essential role in root nodule symbiosis with nitrogen-fixing rhizobia. We show that MtLYR1 has retained the ancestral LCO-binding characteristic and is dispensable for AM. Domain swapping between the three LysMs of MtNFP and MtLYR1 and mutagenesis in MtLYR1 suggest that the MtLYR1 LCO-binding site is on the second LysM and that divergence in MtNFP led to better nodulation, but surprisingly with decreased LCO binding. These results suggest that divergence of the LCO-binding site has been important for the evolution of a role of MtNFP in nodulation with rhizobia.


Asunto(s)
Medicago truncatula , Micorrizas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Micorrizas/metabolismo , Simbiosis/genética , Quitina/metabolismo
3.
Plant J ; 102(2): 311-326, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31782853

RESUMEN

The formation of nitrogen-fixing nodules on legume hosts is a finely tuned process involving many components of both symbiotic partners. Production of the exopolysaccharide succinoglycan by the nitrogen-fixing bacterium Sinorhizobium meliloti 1021 is needed for an effective symbiosis with Medicago spp., and the succinyl modification to this polysaccharide is critical. However, it is not known when succinoglycan intervenes in the symbiotic process, and it is not known whether the plant lysin-motif receptor-like kinase MtLYK10 intervenes in recognition of succinoglycan, as might be inferred from work on the Lotus japonicus MtLYK10 ortholog, LjEPR3. We studied the symbiotic infection phenotypes of S. meliloti mutants deficient in succinoglycan production or producing modified succinoglycan, in wild-type Medicago truncatula plants and in Mtlyk10 mutant plants. On wild-type plants, S. meliloti strains producing no succinoglycan or only unsuccinylated succinoglycan still induced nodule primordia and epidermal infections, but further progression of the symbiotic process was blocked. These S. meliloti mutants induced a more severe infection phenotype on Mtlyk10 mutant plants. Nodulation by succinoglycan-defective strains was achieved by in trans rescue with a Nod factor-deficient S. meliloti mutant. While the Nod factor-deficient strain was always more abundant inside nodules, the succinoglycan-deficient strain was more efficient than the strain producing only unsuccinylated succinoglycan. Together, these data show that succinylated succinoglycan is essential for infection thread formation in M. truncatula, and that MtLYK10 plays an important, but different role in this symbiotic process. These data also suggest that succinoglycan is more important than Nod factors for bacterial survival inside nodules.


Asunto(s)
Medicago truncatula/microbiología , Proteínas de Plantas/metabolismo , Polisacáridos Bacterianos/metabolismo , Sinorhizobium meliloti/fisiología , Simbiosis , Medicago truncatula/enzimología , Medicago truncatula/genética , Peso Molecular , Mutación , Fijación del Nitrógeno , Fenotipo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Proteínas de Plantas/genética , Polisacáridos Bacterianos/genética , Nódulos de las Raíces de las Plantas/enzimología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/genética
4.
J Exp Bot ; 72(10): 3821-3834, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33675231

RESUMEN

Lipo-chitooligosaccharides (LCOs) were originally found as symbiotic signals called Nod Factors (Nod-LCOs) controlling the nodulation of legumes by rhizobia. More recently, LCOs were also found in symbiotic fungi and, more surprisingly, very widely in the kingdom Fungi, including in saprophytic and pathogenic fungi. The LCO-V(C18:1, fucosylated/methyl fucosylated), hereafter called Fung-LCOs, are the LCO structures most commonly found in fungi. This raises the question of how legume plants such as Medicago truncatula can discriminate between Nod-LCOs and Fung-LCOs. To address this question, we performed a genome-wide association study on 173 natural accessions of M. truncatula, using a root branching phenotype and a newly developed local score approach. Both Nod-LCOs and Fung-LCOs stimulated root branching in most accessions, but the root responses to these two types of LCO molecules were not correlated. In addition, the heritability of the root response was higher for Nod-LCOs than for Fung-LCOs. We identified 123 loci for Nod-LCO and 71 for Fung-LCO responses, of which only one was common. This suggests that Nod-LCOs and Fung-LCOs both control root branching but use different molecular mechanisms. The tighter genetic constraint of the root response to Fung-LCOs possibly reflects the ancestral origin of the biological activity of these molecules.


Asunto(s)
Medicago truncatula , Micorrizas , Quitina/análogos & derivados , Quitosano , Estudio de Asociación del Genoma Completo , Lipopolisacáridos , Medicago truncatula/genética , Oligosacáridos , Transducción de Señal , Simbiosis
5.
Plant Cell Physiol ; 61(1): 203-211, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31605615

RESUMEN

Medicago truncatula was proposed, about three decades ago, as a model legume to study the Rhizobium-legume symbiosis. It has now been adopted to study a wide range of biological questions, including various developmental processes (in particular root, symbiotic nodule and seed development), symbiotic (nitrogen-fixing and arbuscular mycorrhizal endosymbioses) and pathogenic interactions, as well as responses to abiotic stress. With a number of tools and resources set up in M. truncatula for omics, genetics and reverse genetics approaches, massive amounts of data have been produced, as well as four genome sequence releases. Many of these data were generated with heterogeneous tools, notably for transcriptomics studies, and are consequently difficult to integrate. This issue is addressed by the LeGOO (for Legume Graph-Oriented Organizer) knowledge base (https://www.legoo.org), which finds the correspondence between the multiple identifiers of the same gene. Furthermore, an important goal of LeGOO is to collect and represent biological information from peer-reviewed publications, whatever the technical approaches used to obtain this information. The information is modeled in a graph-oriented database, which enables flexible representation, with currently over 200,000 relations retrieved from 298 publications. LeGOO also provides the user with mining tools, including links to the Mt5.0 genome browser and associated information (on gene functional annotation, expression, methylome, natural diversity and available insertion mutants), as well as tools to navigate through different model species. LeGOO is, therefore, an innovative database that will be useful to the Medicago and legume community to better exploit the wealth of data produced on this model species.


Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Genes de Plantas/genética , Medicago truncatula/genética , Poloxámero/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genoma de Planta , Medicago truncatula/metabolismo , Micorrizas/genética , Fijación del Nitrógeno , Rhizobium , Programas Informáticos , Estrés Fisiológico , Simbiosis , Transcriptoma
6.
New Phytol ; 221(2): 743-749, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30378690

RESUMEN

Molecular signals released by microbes at the surface of plant roots and leaves largely determine host responses, notably by triggering either immunity or symbiosis. How these signalling pathways cross-talk upon coincident perception of pathogens and symbionts is poorly described in plants forming symbiosis. Nitrogen fixing symbiotic Rhizobia spp. and arbuscular mycorrhizal fungi produce lipo-chitooligosaccharides (LCOs) to initiate host symbiotic programmes. In Medicago truncatula roots, the perception of LCOs leads to reduced efflux of reactive oxygen species (ROS). By contrast, pathogen perception generally triggers a strong ROS burst and activates defence gene expression. Here we show that incubation of M. truncatula seedlings with culture filtrate (CF) of the legume pathogen Aphanomyces euteiches alone or simultaneously with Sinorhizobium meliloti LCOs, resulted in a strong ROS release. However, this response was completely inhibited if CF was added after pre-incubation of seedlings with LCOs. By contrast, expression of immunity-associated genes in response to CF and disease resistance to A. euteiches remained unaffected by LCO treatment of M. truncatula roots. Our findings suggest that symbiotic plants evolved ROS inhibition response to LCOs to facilitate early steps of symbiosis whilst maintaining a parallel defence mechanisms toward pathogens.


Asunto(s)
Aphanomyces/fisiología , Quitina/análogos & derivados , Lípidos/química , Medicago truncatula/inmunología , Medicago truncatula/microbiología , Inmunidad de la Planta , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Quitina/metabolismo , Quitosano , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Oligosacáridos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Plantones/crecimiento & desarrollo , Plantones/fisiología , Sinorhizobium meliloti/fisiología
7.
New Phytol ; 221(4): 2190-2202, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30347445

RESUMEN

Lipo-chitooligosaccharides (LCOs) are microbial symbiotic signals that also influence root growth. In Medicago truncatula, LCOs stimulate lateral root formation (LRF) synergistically with auxin. However, the molecular mechanisms of this phenomenon and whether it is restricted to legume plants are not known. We have addressed the capacity of the model monocot Brachypodium distachyon (Brachypodium) to respond to LCOs and auxin for LRF. For this, we used a combination of root phenotyping assays, live-imaging and auxin quantification, and analysed the regulation of auxin homeostasis genes. We show that LCOs and a low dose of the auxin precursor indole-3-butyric acid (IBA) stimulated LRF in Brachypodium, while a combination of LCOs and IBA led to different regulations. Both LCO and IBA treatments locally increased endogenous indole-3-acetic acid (IAA) content, whereas the combination of LCO and IBA locally increased the endogenous concentration of a conjugated form of IAA (IAA-Ala). LCOs, IBA and the combination differentially controlled expression of auxin homeostasis genes. These results demonstrate that LCOs are active on Brachypodium roots and stimulate LRF probably through regulation of auxin homeostasis. The interaction between LCO and auxin treatments observed in Brachypodium on root architecture opens interesting avenues regarding their possible combined effects during the arbuscular mycorrhizal symbiosis.


Asunto(s)
Brachypodium/crecimiento & desarrollo , Quitina/análogos & derivados , Homeostasis , Ácidos Indolacéticos/farmacología , Lípidos/farmacología , Raíces de Plantas/crecimiento & desarrollo , Brachypodium/efectos de los fármacos , Brachypodium/genética , Quitina/farmacología , Quitosano , Fluorescencia , Homeostasis/efectos de los fármacos , Indoles/metabolismo , Modelos Biológicos , Oligosacáridos , Raíces de Plantas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
8.
New Phytol ; 223(3): 1505-1515, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31059123

RESUMEN

A complex network of pathways coordinates nodulation and epidermal root hair infection in the symbiotic interaction between rhizobia and legume plants. Whereas nodule formation was known to be autoregulated, it was so far unclear whether a similar control is exerted on the infection process. We assessed the capacity of Medicago plants nodulated by Sinorhizobium meliloti to modulate root susceptibility to secondary bacterial infection or to purified Nod factors in split-root and volatile assays using bacterial and plant mutant combinations. Ethylene implication in this process emerged from gas production measurements, use of a chemical inhibitor of ethylene biosynthesis and of a Medicago mutant affected in ethylene signal transduction. We identified a feedback mechanism that we named AOI (for Autoregulation Of Infection) by which endosymbiotic bacteria control secondary infection thread formation by their rhizospheric peers. AOI involves activation of a cyclic adenosine 3',5'-monophosphate (cAMP) cascade in endosymbiotic bacteria, which decreases both root infectiveness and root susceptibility to bacterial Nod factors. These latter two effects are mediated by ethylene. AOI is a novel component of the complex regulatory network controlling the interaction between Sinorhizobium meliloti and its host plants that emphasizes the implication of endosymbiotic bacteria in fine-tuning the interaction.


Asunto(s)
Etilenos/metabolismo , Medicago truncatula/microbiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Sinorhizobium meliloti/fisiología , Simbiosis , Proteínas Bacterianas/metabolismo , Modelos Biológicos , Epidermis de la Planta/microbiología , Nodulación de la Raíz de la Planta , Compuestos Orgánicos Volátiles/metabolismo
9.
New Phytol ; 223(3): 1516-1529, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31058335

RESUMEN

Plant -specific lysin-motif receptor-like kinases (LysM-RLKs) are implicated in the perception of N-acetyl glucosamine-containing compounds, some of which are important signal molecules in plant-microbe interactions. Among these, both lipo-chitooligosaccharides (LCOs) and chitooligosaccharides (COs) are proposed as arbuscular mycorrhizal (AM) fungal symbiotic signals. COs can also activate plant defence, although there are scarce data about CO production by pathogens, especially nonfungal pathogens. We tested Medicago truncatula mutants in the LysM-RLK MtLYK9 for their abilities to interact with the AM fungus Rhizophagus irregularis and the oomycete pathogen Aphanomyces euteiches. This prompted us to analyse whether A. euteiches can produce COs. Compared with wild-type plants, Mtlyk9 mutants had fewer infection events and were less colonised by the AM fungus. By contrast, Mtlyk9 mutants were more heavily infected by A. euteiches and showed more disease symptoms. Aphanomyces euteiches was also shown to produce short COs, mainly CO II, but also CO III and CO IV, and traces of CO V, both ex planta and in planta. MtLYK9 thus has a dual role in plant immunity and the AM symbiosis, which raises questions about the functioning and the ancestral origins of such a receptor protein.


Asunto(s)
Glomeromycota/fisiología , Medicago truncatula/microbiología , Micorrizas/fisiología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Simbiosis , Secuencia de Aminoácidos , Aphanomyces/fisiología , Quitina/análogos & derivados , Quitina/biosíntesis , Quitosano , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Mutación/genética , Oligosacáridos , Proteínas de Plantas/química , Proteínas de Plantas/genética
10.
J Exp Bot ; 68(3): 569-583, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28073951

RESUMEN

Nodulation (Nod) factors (NFs) are symbiotic molecules produced by rhizobia that are essential for establishment of the rhizobium-legume endosymbiosis. Purified NFs can stimulate lateral root formation (LRF) in Medicago truncatula, but little is known about the molecular mechanisms involved. Using a combination of reporter constructs, pharmacological and genetic approaches, we show that NFs act on early steps of LRF in M. truncatula, independently of the ethylene signaling pathway and of the cytokinin receptor MtCRE1, but in interaction with auxin. We conducted a whole-genome transcriptomic study upon NF and/or auxin treatments, using a lateral root inducible system adapted for M. truncatula. This revealed a large overlap between NF and auxin signaling and, more interestingly, synergistic interactions between these molecules. Three groups showing interaction effects were defined: group 1 contained more than 1500 genes responding specifically to the combinatorial treatment of NFs and auxin; group 2 comprised auxin-regulated genes whose expression was enhanced or antagonized by NFs; and in group 3 the expression of NF regulated genes was antagonized by auxin. Groups 1 and 2 were enriched in signaling and metabolic functions, which highlights important crosstalk between NF and auxin signaling for both developmental and symbiotic processes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Lipopolisacáridos/fisiología , Medicago truncatula/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Sinorhizobium meliloti/fisiología , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/microbiología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología
11.
Development ; 139(18): 3383-91, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22874912

RESUMEN

Legumes have evolved the capacity to form a root nodule symbiosis with soil bacteria called rhizobia. The establishment of this symbiosis involves specific developmental events occurring both in the root epidermis (notably bacterial entry) and at a distance in the underlying root cortical cells (notably cell divisions leading to nodule organogenesis). The processes of bacterial entry and nodule organogenesis are tightly linked and both depend on rhizobial production of lipo-chitooligosaccharide molecules called Nod factors. However, how these events are coordinated remains poorly understood. Here, we have addressed the roles of two key symbiotic genes of Medicago truncatula, the lysin motif (LysM) domain-receptor like kinase gene NFP and the calcium- and calmodulin-dependent protein kinase gene DMI3, in the control of both nodule organogenesis and bacterial entry. By complementing mutant plants with corresponding genes expressed either in the epidermis or in the cortex, we have shown that epidermal DMI3, but not NFP, is sufficient for infection thread formation in root hairs. Epidermal NFP is sufficient to induce cortical cell divisions leading to nodule primordia formation, whereas DMI3 is required in both cell layers for these processes. Our results therefore suggest that a signal, produced in the epidermis under the control of NFP and DMI3, is responsible for activating DMI3 in the cortex to trigger nodule organogenesis. We integrate these data to propose a new model for epidermal/cortical crosstalk during early steps of nodulation.


Asunto(s)
Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Epidermis de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/fisiología , Medicago truncatula/genética , Epidermis de la Planta/genética , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/fisiología
12.
New Phytol ; 208(1): 224-40, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25919491

RESUMEN

Myc-LCOs are newly identified symbiotic signals produced by arbuscular mycorrhizal (AM) fungi. Like rhizobial Nod factors, they are lipo-chitooligosaccharides that activate the common symbiotic signalling pathway (CSSP) in plants. To increase our limited understanding of the roles of Myc-LCOs we aimed to analyse Myc-LCO-induced transcriptional changes and their genetic control. Whole genome RNA sequencing (RNA-seq) was performed on roots of Medicago truncatula wild-type plants, and dmi3 and nsp1 symbiotic mutants affected in nodulation and mycorrhizal signalling. Plants were treated separately with the two major types of Myc-LCOs, sulphated and nonsulphated. Generalized linear model analysis identified 2201 differentially expressed genes and classified them according to genotype and/or treatment effects. Three genetic pathways for Myc-LCO-regulation of transcriptomic reprogramming were highlighted: DMI3- and NSP1-dependent; DMI3-dependent and NSP1-independent; and DMI3- and NSP1-independent. Comprehensive analysis revealed overlaps with previous AM studies, and highlighted certain functions, especially signalling components and transcription factors. These data provide new insights into mycorrhizal signalling mechanisms, supporting a role for NSP1, and specialisation for NSP1-dependent and -independent pathways downstream of DMI3. Our data also indicate significant Myc-LCO-activated signalling upstream of DMI3 and/or parallel to the CSSP and some constitutive activity of the CSSP.


Asunto(s)
Polisacáridos Fúngicos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Medicago truncatula/genética , Micorrizas , Simbiosis/genética , Factores de Transcripción/metabolismo , Quitina/análogos & derivados , Quitina/metabolismo , Quitina/farmacología , Quitosano , Polisacáridos Fúngicos/metabolismo , Hongos/metabolismo , Genotipo , Medicago truncatula/efectos de los fármacos , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Mutación , Oligosacáridos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Análisis de Secuencia de ARN , Transducción de Señal , Transcriptoma/efectos de los fármacos
13.
New Phytol ; 198(3): 875-886, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23432463

RESUMEN

Plant LysM proteins control the perception of microbial-derived N-acetylglucosamine compounds for the establishment of symbiosis or activation of plant immunity. This raises questions about how plants, and notably legumes, can differentiate friends and foes using similar molecular actors and whether any receptors can intervene in both symbiosis and resistance. To study this question, nfp and lyk3 LysM-receptor like kinase mutants of Medicago truncatula that are affected in the early steps of nodulation, were analysed following inoculation with Aphanomyces euteiches, a root oomycete. The role of NFP in this interaction was further analysed by overexpression of NFP and by transcriptome analyses. nfp, but not lyk3, mutants were significantly more susceptible than wildtype plants to A. euteiches, whereas NFP overexpression increased resistance. Transcriptome analyses on A. euteiches inoculation showed that mutation in the NFP gene led to significant changes in the expression of c. 500 genes, notably involved in cell dynamic processes previously associated with resistance to pathogen penetration. nfp mutants also showed an increased susceptibility to the fungus Colletotrichum trifolii. These results demonstrate that NFP intervenes in M. truncatula immunity, suggesting an unsuspected role for NFP in the perception of pathogenic signals.


Asunto(s)
Colletotrichum/patogenicidad , Interacciones Huésped-Patógeno , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Proteínas de Plantas/metabolismo , Aphanomyces/patogenicidad , Aphanomyces/fisiología , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Simbiosis/fisiología
14.
J Sports Sci Med ; 12(3): 394-401, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24149143

RESUMEN

Live High:Train Low (LHTL) altitude training is a popular ergogenic aid amongst athletes. An alternative hypoxia protocol, acute (60-90 min daily) Intermittent Hypoxic Exposure (IHE), has shown potential for improving athletic performance. The aim of this study was to compare directly the effects of LHTL and IHE on the running and blood characteristics of elite triathletes. Changes in total haemoglobin mass (Hbmass), maximal oxygen consumption (VO2max), velocity at VO2max (vVO2max), time to exhaustion (TTE), running economy, maximal blood lactate concentration ([La]) and 3 mM [La] running speed were compared following 17 days of LHTL (240 h of hypoxia), IHE (10.2 h of hypoxia) or Placebo treatment in 24 Australian National Team triathletes (7 female, 17 male). There was a clear 3.2 ± 4.8% (mean ± 90% confidence limits) increase in Hbmass following LHTL compared with Placebo, whereas the corresponding change of -1.4 ± 4.5% in IHE was unclear. Following LHTL, running economy was 2.8 ± 4.4% improved compared to IHE and 3mM [La] running speed was 4.4 ± 4.5% improved compared to Placebo. After IHE, there were no beneficial changes in running economy or 3mM [La] running speed compared to Placebo. There were no clear changes in VO2max, vVO2max and TTE following either method of hypoxia. The clear difference in Hbmass response between LHTL and IHE indicated that the dose of hypoxia in IHE was insufficient to induce accelerated erythropoiesis. Improved running economy and 3mM [La] running speed following LHTL suggested that this method of hypoxic exposure may enhance performance at submaximal running speeds. Overall, there was no evidence to support the use of IHE in elite triathletes. Key PointsDespite a clear 3.2% increase in haemoglobin mass following 17 days of Live High: Train Low altitude training, no change in maximal aerobic capacity was observed.There were positive changes in running economy and the lactate-speed relationship at submaximal running speeds following Live High: Train Low altitude training.There was no evidence to support the use of daily 60-90 minute Intermittent Hypoxic Exposure in elite triathletes.

15.
Eur J Appl Physiol ; 112(9): 3275-85, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22234397

RESUMEN

We compared changes in performance and total haemoglobin mass (tHb) of elite swimmers in the weeks following either Classic or Live High:Train Low (LHTL) altitude training. Twenty-six elite swimmers (15 male, 11 female, 21.4 ± 2.7 years; mean ± SD) were divided into two groups for 3 weeks of either Classic or LHTL altitude training. Swimming performances over 100 or 200 m were assessed before altitude, then 1, 7, 14 and 28 days after returning to sea-level. Total haemoglobin mass was measured twice before altitude, then 1 and 14 days after return to sea-level. Changes in swimming performance in the first week after Classic and LHTL were compared against those of Race Control (n = 11), a group of elite swimmers who did not complete altitude training. In addition, a season-long comparison of swimming performance between altitude and non-altitude groups was undertaken to compare the progression of performances over the course of a competitive season. Regardless of altitude training modality, swimming performances were substantially slower 1 day (Classic 1.4 ± 1.3% and LHTL 1.6 ± 1.6%; mean ± 90% confidence limits) and 7 days (0.9 ± 1.0% and 1.9 ± 1.1%) after altitude compared to Race Control. In both groups, performances 14 and 28 days after altitude were not different from pre-altitude. The season-long comparison indicated that no clear advantage was obtained by swimmers who completed altitude training. Both Classic and LHTL elicited ~4% increases in tHb. Although altitude training induced erythropoeisis, this physiological adaptation did not transfer directly into improved competitive performance in elite swimmers.


Asunto(s)
Altitud , Rendimiento Atlético/fisiología , Hemoglobinas/análisis , Educación y Entrenamiento Físico/métodos , Natación/fisiología , Adaptación Fisiológica/fisiología , Adolescente , Adulto , Atletas , Recuento de Eritrocitos , Femenino , Humanos , Masculino , Adulto Joven
16.
Protein Sci ; 31(6): e4327, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35634776

RESUMEN

N-acetylglucosamine containing compounds acting as pathogenic or symbiotic signals are perceived by plant-specific Lysin Motif Receptor-Like Kinases (LysM-RLKs). The molecular mechanisms of this perception are not fully understood, notably those of lipo-chitooligosaccharides (LCOs) produced during root endosymbioses with nitrogen-fixing bacteria or arbuscular mycorrhizal fungi. In Medicago truncatula, we previously identified the LysM-RLK LYR3 (MtLYR3) as a specific LCO-binding protein. We also showed that the absence of LCO binding to LYR3 of the non-mycorrhizal Lupinus angustifolius, (LanLYR3), was related to LysM3, which differs from that of MtLYR3 by several amino acids and, particularly, by a critical tyrosine residue absent in LanLYR3. Here, we aimed to define the LCO binding site of MtLYR3 by using molecular modelling and simulation approaches, combined with site-directed mutagenesis and LCO binding experiments. 3D models of MtLYR3 and LanLYR3 ectodomains were built, and homology modelling and molecular dynamics (MD) simulations were performed. Molecular docking and MD simulation on the LysM3 identified potential key residues for LCO binding. We highlighted by steered MD simulations that in addition to the critical tyrosine, two other residues were important for LCO binding in MtLYR3. Substitution of these residues in LanLYR3-LysM3 by those of MtLYR3-LysM3 allowed the recovery of high-affinity LCO binding in experimental radioligand-binding assays. An analysis of selective constraints revealed that the critical tyrosine has experienced positive selection pressure and is absent in some LYR3 proteins. These findings now pave the way to uncover the functional significance of this specific evolutionary pattern.


Asunto(s)
Quitina , Medicago truncatula , Quitina/metabolismo , Quitosano , Medicago truncatula/genética , Simulación del Acoplamiento Molecular , Oligosacáridos , Tirosina/metabolismo
17.
Mol Plant Microbe Interact ; 24(8): 867-78, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21469937

RESUMEN

The arbuscular mycorrhizal (AM) and the rhizobia-legume (RL) root endosymbioses are established as a result of signal exchange in which there is mutual recognition of diffusible signals produced by plant and microbial partners. It was discovered 20 years ago that the key symbiotic signals produced by rhizobial bacteria are lipo-chitooligosaccharides (LCO), called Nod factors. These LCO are perceived via lysin-motif (LysM) receptors and activate a signaling pathway called the common symbiotic pathway (CSP), which controls both the RL and the AM symbioses. Recent work has established that an AM fungus, Glomus intraradices, also produces LCO that activate the CSP, leading to induction of gene expression and root branching in Medicago truncatula. These Myc-LCO also stimulate mycorrhization in diverse plants. In addition, work on the nonlegume Parasponia andersonii has shown that a LysM receptor is required for both successful mycorrhization and nodulation. Together these studies show that structurally related signals and the LysM receptor family are key components of both nodulation and mycorrhization. LysM receptors are also involved in the perception of chitooligosaccharides (CO), which are derived from fungal cell walls and elicit defense responses and resistance to pathogens in diverse plants. The discovery of Myc-LCO and a LysM receptor required for the AM symbiosis, therefore, not only raises questions of how legume plants discriminate fungal and bacterial endosymbionts but also, more generally, of how plants discriminate endosymbionts from pathogenic microorganisms using structurally related LCO and CO signals and of how these perception mechanisms have evolved.


Asunto(s)
Micorrizas/metabolismo , Oligosacáridos/metabolismo , Plantas/metabolismo , Plantas/microbiología , Regulación de la Expresión Génica de las Plantas/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Transducción de Señal
18.
Eur J Appl Physiol ; 111(9): 2307-14, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21336951

RESUMEN

The Athlete Blood Passport is the most recent tool adopted by anti-doping authorities to detect athletes using performance-enhancing drugs such as recombinant human erythropoietin (rhEPO). This strategy relies on detecting abnormal variations in haematological variables caused by doping, against a background of biological and analytical variability. Ten subjects were given twice weekly intravenous injections of rhEPO for up to 12 weeks. Full blood counts were measured using a Sysmex XE-2100 automated haematology analyser, and total haemoglobin mass via a carbon monoxide rebreathing test. The sensitivity of the passport to flag abnormal deviations in blood values was evaluated using dedicated Athlete Blood Passport software. Our treatment regimen elicited a 10% increase in total haemoglobin mass equivalent to approximately two bags of reinfused blood. The passport software did not flag any subjects as being suspicious of doping whilst they were receiving rhEPO. We conclude that it is possible for athletes to use rhEPO without eliciting abnormal changes in the blood variables currently monitored by the Athlete Blood Passport.


Asunto(s)
Biomarcadores/sangre , Doping en los Deportes/métodos , Eritropoyetina/administración & dosificación , Eritropoyetina/sangre , Límite de Detección , Detección de Abuso de Sustancias/métodos , Adulto , Atletas , Biomarcadores/análisis , Relación Dosis-Respuesta a Droga , Eritropoyetina/análisis , Humanos , Masculino , Sustancias para Mejorar el Rendimiento/administración & dosificación , Sustancias para Mejorar el Rendimiento/análisis , Sustancias para Mejorar el Rendimiento/sangre , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/análisis , Proteínas Recombinantes/sangre , Valores de Referencia , Entrenamiento de Fuerza , Sensibilidad y Especificidad , Detección de Abuso de Sustancias/normas , Adulto Joven
19.
Proc Natl Acad Sci U S A ; 105(28): 9817-22, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18621693

RESUMEN

Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an "RRP domain" specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling.


Asunto(s)
Genes de Plantas/fisiología , Medicago truncatula/genética , Proteínas Nucleares/fisiología , Rhizobium , Secuencia de Bases , Genes de Plantas/genética , Medicago truncatula/microbiología , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Simbiosis
20.
PLoS One ; 15(10): e0235446, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33002000

RESUMEN

We recently described a regulatory loop, which we termed autoregulation of infection (AOI), by which Sinorhizobium meliloti, a Medicago endosymbiont, downregulates the root susceptibility to secondary infection events via ethylene. AOI is initially triggered by so-far unidentified Medicago nodule signals named signal 1 and signal 1' whose transduction in bacteroids requires the S. meliloti outer-membrane-associated NsrA receptor protein and the cognate inner-membrane-associated adenylate cyclases, CyaK and CyaD1/D2, respectively. Here, we report on advances in signal 1 identification. Signal 1 activity is widespread as we robustly detected it in Medicago nodule extracts as well as in yeast and bacteria cell extracts. Biochemical analyses indicated a peptidic nature for signal 1 and, together with proteomic analyses, a universally conserved Medicago ribosomal protein of the uL2 family was identified as a candidate signal 1. Specifically, MtRPuL2A (MtrunA17Chr7g0247311) displays a strong signal activity that requires S. meliloti NsrA and CyaK, as endogenous signal 1. We have shown that MtRPuL2A is active in signaling only in a non-ribosomal form. A Medicago truncatula mutant in the major symbiotic transcriptional regulator MtNF-YA1 lacked most signal 1 activity, suggesting that signal 1 is under developmental control. Altogether, our results point to the MtRPuL2A ribosomal protein as the candidate for signal 1. Based on the Mtnf-ya1 mutant, we suggest a link between root infectiveness and nodule development. We discuss our findings in the context of ribosomal protein moonlighting.


Asunto(s)
Medicago truncatula , Proteínas de Plantas/metabolismo , Proteínas Ribosómicas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Sinorhizobium meliloti/metabolismo , Coinfección/prevención & control , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Proteínas Ribosómicas/genética , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA