RESUMEN
BACKGROUND: More than 95% of cervical cancers and their precancerous lesions are caused by human papillomavirus (HPV). Cell-free (cf) HPV DNA detection in blood samples may serve as a monitoring tool for cervical cancer. METHODS: In our methodological study, an HPV panel for simultaneous detection of 24 types using mass spectrometry-based analysis was developed for liquid biopsy approaches and tested on HPV positive cell lines, plasmid controls, and cervical high-grade squamous intraepithelial lesions (HSIL) in positive smear samples (n = 52). It was validated in cfDNA blood samples (n = 40) of cervical cancer patients. RESULTS: The HPV panel showed proficient results in cell lines and viral plasmids with a limit of detection of 1 IU (international units)/µL for HPV16/18 and 10GE/µL for HPV11/31/33/39/45/51/52/58/59 and a specificity of 100% for the tested HPV types. In cervical smear samples, HPV DNA was detected with a sensitivity of 98.14%. The overall agreement between the new HPV panel and clinical records was 97.2% (κ = 0.84). In cervical cancer cfDNA, 26/40 (65.0%) tested positive for any HPV type, with most infections due to hrHPV (24/26). HPV positive samples were found in all FIGO stages, with the highest positivity ratio in FIGO III and IV. Even the lowest stage, FIGO I, had 12/23 (52.2%) patients with a positive HPV plasma status. CONCLUSIONS: This proof-of-concept paper shows that the described assay produces reliable results for detecting HPV types in a multiplex mass spectrometry-based assay in cervical smear and cfDNA with high specificity and sensitivity in both cohorts. The assay shows potential for liquid biopsy-based applications in monitoring cervical cancer progression.
Asunto(s)
Ácidos Nucleicos Libres de Células , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/diagnóstico , Virus del Papiloma Humano , Papillomavirus Humano 16/genética , Infecciones por Papillomavirus/diagnóstico , Papillomavirus Humano 18 , Biopsia Líquida , ADNRESUMEN
OBJECTIVES: Cancer therapy-related cardiac dysfunction (CTRCD) is a relevant clinical problem and needs early prediction. This study aimed to analyze myocardial injury using serial laboratory and cardiac magnetic resonance imaging (CMR) parameters after epirubicin-based chemotherapy compared with left-sided radiotherapy and to study their value for early prediction of CTRCD. METHODS: Sixty-six consecutive women (53 ± 13 years) including n = 39 with epirubicin-based chemotherapy and n = 27 with left-sided radiotherapy were prospectively studied by 3 T CMR including left ventricular (LV) mass and volumes for ejection fraction (LVEF), as well as feature-tracking with global longitudinal strain (GLS) and T1/T2 mapping. CMR was performed at baseline, at therapy completion (follow-up 1, FU1), and after 13 ± 2 months (FU2). CTRCD was defined as LVEF decline of at least 10% to < 55% or a > 15% GLS change at FU2. RESULTS: T1 and T2 increased at FU1 after epirubicin-based chemotherapy, but not after left-sided radiotherapy. CTRCD occurred in 20% of patients after epirubicin-based chemotherapy and in 4% after left-sided radiotherapy. T1 at FU1 was the best single parameter to predict CTRCD with an area under the curve (AUC) of 0.712 (CI 0.587-0.816, p = 0.005) with excellent sensitivity (100%, 66-100%), but low specificity (44%, 31-58%). Combined use of increased T1 and LVEF ≤ 60% at FU1 improved AUC to 0.810 (0.695-0.896) resulting in good sensitivity (78%, 44-95%) and specificity (84%, 72-92%). CONCLUSION: Only epirubicin-based chemotherapy, but not left-sided radiotherapy, resulted in increased T1/T2 myocardial relaxation times as a marker of myocardial injury. Combined use of CMR parameters may allow an early prediction of subsequent CTCRD. KEY POINTS: ⢠Myocardial T1 and T2 relaxation times increased at FU1 after epirubicin-based chemotherapy, but not after left-sided radiotherapy. ⢠Cancer therapy-related cardiac dysfunction (CTRCD) occurred in 20% of patients after epirubicin-based chemotherapy and in 4% after left-sided radiotherapy. ⢠Combined use of increased T1 and reduced LVEF had an AUC of 0.810 (0.695-0.896) to predict CTRCD with good sensitivity (78%, 44-95%) and specificity (84%, 72-92%).
Asunto(s)
Neoplasias de la Mama , Cardiopatías , Disfunción Ventricular Izquierda , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/radioterapia , Cardiotoxicidad/diagnóstico por imagen , Cardiotoxicidad/etiología , Epirrubicina/efectos adversos , Femenino , Humanos , Imagen por Resonancia Magnética , Imagen por Resonancia Cinemagnética , Valor Predictivo de las Pruebas , Volumen Sistólico , Disfunción Ventricular Izquierda/inducido químicamente , Disfunción Ventricular Izquierda/diagnóstico por imagen , Función Ventricular IzquierdaRESUMEN
BACKGROUND: The incidence of brain metastases in breast cancer (BCBM) patients is increasing. These patients have a very poor prognosis, and therefore, identification of blood-based biomarkers, such as circulating tumor cells (CTCs), and understanding the genomic heterogeneity could help to personalize treatment options. METHODS: Both EpCAM-dependent (CellSearch® System) and EpCAM-independent Ficoll-based density centrifugation methods were used to detect CTCs from 57 BCBM patients. DNA from individual CTCs and corresponding primary tumors and brain metastases were analyzed by next-generation sequencing (NGS) in order to evaluate copy number aberrations and single nucleotide variations (SNVs). RESULTS: CTCs were detected after EpCAM-dependent enrichment in 47.7% of the patients (≥ 5 CTCs/7.5 ml blood in 20.5%). The CTC count was associated with ERBB2 status (p = 0.029) of the primary tumor as well as with the prevalence of bone metastases (p = 0.021). EpCAM-independent enrichment revealed CTCs in 32.6% of the patients, especially among triple-negative breast cancer (TNBC) patients (70.0%). A positive CTC status after enrichment of either method was significantly associated with decreased overall survival time (p < 0.05). Combining the results of both enrichment methods, 63.6% of the patients were classified as CTC positive. In three patients, the matched tumor tissue and single CTCs were analyzed by NGS showing chromosomal aberrations with a high genomic clonality and mutations in pathways potentially important in brain metastasis formation. CONCLUSION: The detection of CTCs, regardless of the enrichment method, is of prognostic relevance in BCBM patients and in combination with molecular analysis of CTCs can help defining patients with higher risk of early relapse and suitability for targeted treatment.
Asunto(s)
Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Células Neoplásicas Circulantes/patología , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Recuento de Células , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN , Molécula de Adhesión Celular Epitelial/metabolismo , Femenino , Humanos , Mutación , Células Neoplásicas Circulantes/metabolismo , Pronóstico , Análisis de SupervivenciaRESUMEN
PURPOSE: Lung cancer remains the leading cause of cancer-related mortality worldwide. Stage III non-small cell lung cancer (NSCLC) includes heterogeneous presentation of the disease including lymph node involvement and large tumour volumes with infiltration of the mediastinum, heart or spine. In the treatment of stage III NSCLC an interdisciplinary approach including radiotherapy is considered standard of care with acceptable toxicity and improved clinical outcome concerning local control. Furthermore, gross tumour volume (GTV) changes during definitive radiotherapy would allow for adaptive replanning which offers normal tissue sparing and dose escalation. METHODS: A literature review was conducted to describe the predictive value of GTV changes during definitive radiotherapy especially focussing on overall survival. The literature search was conducted in a two-step review process using PubMed®/Medline® with the key words "stage III non-small cell lung cancer" and "radiotherapy" and "tumour volume" and "prognostic factors". RESULTS: After final consideration 17, 14 and 9 studies with a total of 2516, 784 and 639 patients on predictive impact of GTV, GTV changes and its impact on overall survival, respectively, for definitive radiotherapy for stage III NSCLC were included in this review. Initial GTV is an important prognostic factor for overall survival in several studies, but the time of evaluation and the value of histology need to be further investigated. GTV changes during RT differ widely, optimal timing for re-evaluation of GTV and their predictive value for prognosis needs to be clarified. The prognostic value of GTV changes is unclear due to varying study qualities, re-evaluation time and conflicting results. CONCLUSION: The main findings were that the clinical impact of GTV changes during definitive radiotherapy is still unclear due to heterogeneous study designs with varying quality. Several potential confounding variables were found and need to be considered for future studies to evaluate GTV changes during definitive radiotherapy with respect to treatment outcome.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Carga Tumoral/efectos de la radiación , Terapia Combinada , Humanos , Comunicación Interdisciplinaria , Colaboración Intersectorial , Metástasis Linfática/patología , Metástasis Linfática/radioterapia , Invasividad Neoplásica/patología , Estadificación de Neoplasias , PronósticoRESUMEN
Cervical cancer is the fourth most common cancer in women, which is associated in >95% with a high-risk human papillomavirus (HPV) infection. Methylation of specific genes has been closely associated with the progress of cervical high-grade dysplastic lesions to invasive carcinomas. Therefore, DNA methylation has been proposed as a triage for women infected with high-risk HPV. Methylation analyses of cervical cancer tissue have shown that cell adhesion molecule 1 (CADM1) and myelin and lymphocyte protein (MAL) methylation are present in over 90% of all cervical high-grade neoplasias and invasive cervical cancers. Here, we established a liquid biopsy-based assay to detect MAL and CADM1 methylation in cell free (cf)DNA of cervical cancer. Methylation of the target gene was validated on bisulfite converted smear-DNA from cervical dysplasia patients and afterward applied to cfDNA using quantitative real-time PCR. In 52 smears, a combined analysis of CADM1 and/or MAL (CADM1/MAL) showed methylation in 86.5% of the cases. In cfDNA samples of 24 cervical cancer patients, CADM1/MAL methylation was detected in 83.3% of the cases. CADM1/MAL methylation was detected already in 81.8% of stage I-II patients showing the high sensitivity of this liquid biopsy assay. In combination with a specificity of 95.5% towards healthy donors (HD) and an area under the curve (AUC) of 0.872 in the receiver operating characteristic (ROC) analysis, CADM1/MAL cfDNA methylation detection might represent a novel and promising liquid biopsy marker in cervical cancer.
RESUMEN
Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9-RAGE-NF-κB-JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.
Asunto(s)
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/secundario , Irradiación Craneana , Humanos , Melanoma/radioterapiaRESUMEN
Functional studies giving insight into the biology of circulating tumor cells (CTCs) remain scarce due to the low frequency of CTCs and lack of appropriate models. Here, we describe the characterization of a novel CTC-derived breast cancer cell line, designated CTC-ITB-01, established from a patient with metastatic estrogen receptor-positive (ER+ ) breast cancer, resistant to endocrine therapy. CTC-ITB-01 remained ER+ in culture, and copy number alteration (CNA) profiling showed high concordance between CTC-ITB-01 and CTCs originally present in the patient with cancer at the time point of blood draw. RNA-sequencing data indicate that CTC-ITB-01 has a predominantly epithelial expression signature. Primary tumor and metastasis formation in an intraductal PDX mouse model mirrored the clinical progression of ER+ breast cancer. Downstream ER signaling was constitutively active in CTC-ITB-01 independent of ligand availability, and the CDK4/6 inhibitor Palbociclib strongly inhibited CTC-ITB-01 growth. Thus, we established a functional model that opens a new avenue to study CTC biology.
Asunto(s)
Neoplasias de la Mama , Células Neoplásicas Circulantes , Animales , Biomarcadores de Tumor , Carcinogénesis , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Ratones , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/patologíaRESUMEN
Although clinically relevant, the detection rates of EpCAM positive CTCs in non-small cell lung cancer (NSCLC) are surprisingly low. To find new clinically informative markers for CTC detection in NSCLC, the expression of EGFR and HER3 was first analyzed in NSCLC tissue (n = 148). A positive EGFR and HER3 staining was observed in 52.3% and 82.7% of the primary tumors, and in 62.7% and 91.2% of brain metastases, respectively. Only 3.0% of the brain metastases samples were negative for both HER3 and EGFR proteins, indicating that the majority of metastases express these ERBB proteins, which were therefore chosen for CTC enrichment using magnetic cell-separation. Enrichment based on either EGFR or HER3 detected CTCs in 37.8% of the patients, while the combination of EGFR/HER3 enrichment with the EpCAM-based CellSearch technique detected a significantly higher number of 66.7% CTC-positive patients (Cohen's kappa = -0.280) which underlines the existence of different CTC subpopulations in NSCLC. The malignant origin of keratin-positive/CD45-negative CTC clusters and single CTCs detected after EGFR/HER3 based enrichment was documented by the detection of NSCLC-associated mutations. In conclusion, EGFR and HER3 expression in metastasized NSCLC patients have considerable value for CTC isolation plus multiple markers can provide a novel liquid biopsy approach.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Células Neoplásicas Circulantes/metabolismo , Receptor ErbB-3/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Neoplasias Encefálicas/secundario , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Separación Inmunomagnética , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Análisis de Matrices TisularesRESUMEN
PURPOSE: Several prognostic indices (PI) have been developed to stratify patients with brain metastases in groups with good or bad prognosis. The aim of our study was to compare nine prognostic scores for patients with brain metastases (BM) of breast cancer receiving radiotherapy. METHODS: The clinical data of 139 breast cancer patients with BM were collected retrospectively. All patients were treated with cerebral radiotherapy or surgery followed by radiotherapy between January 2007 and December 2012. The prognostic value and accuracy of recursive partitioning analysis (RPA), RPA II, graded prognostic assessment (GPA), basic score for BM, Breast-RPA, Breast-GPA, Rades Score 2011, Germany Score and Breast Rades Score were assessed. RESULTS: The median survival after BM diagnosis in our cohort was 14 months. The overall 6-month, 1-, 2- and 3-year survival rates were 49.6, 37.4, 20.9 and 13.7 %, respectively. Most of the PI were associated with OS, but univariate analysis favored GPA regarding OS. GPA was the most accurate score to identify patients with long (longer than 12 months) and Breast-GPA patients with short (<3 months) life expectancy. CONCLUSIONS: GPA and Breast-GPA seem to be the most useful scores and perform better than other PI for breast cancer patients with BM receiving radiotherapy.