Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 156(1-2): 261-76, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439381

RESUMEN

Traumatic events generate some of the most enduring forms of memories. Despite the elevated lifetime prevalence of anxiety disorders, effective strategies to attenuate long-term traumatic memories are scarce. The most efficacious treatments to diminish recent (i.e., day-old) traumata capitalize on memory updating mechanisms during reconsolidation that are initiated upon memory recall. Here, we show that, in mice, successful reconsolidation-updating paradigms for recent memories fail to attenuate remote (i.e., month-old) ones. We find that, whereas recent memory recall induces a limited period of hippocampal neuroplasticity mediated, in part, by S-nitrosylation of HDAC2 and histone acetylation, such plasticity is absent for remote memories. However, by using an HDAC2-targeting inhibitor (HDACi) during reconsolidation, even remote memories can be persistently attenuated. This intervention epigenetically primes the expression of neuroplasticity-related genes, which is accompanied by higher metabolic, synaptic, and structural plasticity. Thus, applying HDACis during memory reconsolidation might constitute a treatment option for remote traumata.


Asunto(s)
Miedo , Memoria a Largo Plazo , Plasticidad Neuronal , Animales , Epigénesis Genética , Hipocampo/metabolismo , Histona Desacetilasa 2/metabolismo , Inhibidores de Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Masculino , Memoria a Largo Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 119(22): e2116797119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35613054

RESUMEN

Long-term memory formation relies on synaptic plasticity, neuronal activity-dependent gene transcription, and epigenetic modifications. Multiple studies have shown that HDAC inhibitor (HDACi) treatments can enhance individual aspects of these processes and thereby act as putative cognitive enhancers. However, their mode of action is not fully understood. In particular, it is unclear how systemic application of HDACis, which are devoid of substrate specificity, can target pathways that promote memory formation. In this study, we explore the electrophysiological, transcriptional, and epigenetic responses that are induced by CI-994, a class I HDACi, combined with contextual fear conditioning (CFC) in mice. We show that CI-994­mediated improvement of memory formation is accompanied by enhanced long-term potentiation in the hippocampus, a brain region recruited by CFC, but not in the striatum, a brain region not primarily implicated in fear learning. Furthermore, using a combination of bulk and single-cell RNA-sequencing, we find that, when paired with CFC, HDACi treatment engages synaptic plasticity-promoting gene expression more strongly in the hippocampus, specifically in the dentate gyrus (DG). Finally, using chromatin immunoprecipitation-sequencing (ChIP-seq) of DG neurons, we show that the combined action of HDACi application and conditioning is required to elicit enhancer histone acetylation in pathways that underlie improved memory performance. Together, these results indicate that systemic HDACi administration amplifies brain region-specific processes that are naturally induced by learning.


Asunto(s)
Benzamidas , Giro Dentado , Inhibidores de Histona Desacetilasas , Memoria a Largo Plazo , Fenilendiaminas , Animales , Benzamidas/farmacología , Comunicación Celular/efectos de los fármacos , Giro Dentado/citología , Giro Dentado/efectos de los fármacos , Giro Dentado/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Memoria a Largo Plazo/efectos de los fármacos , Ratones , Plasticidad Neuronal , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenilendiaminas/farmacología , RNA-Seq , Análisis de la Célula Individual
3.
Neurobiol Dis ; 184: 106219, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422091

RESUMEN

Accumulating evidence indicates that early adverse life experiences may be involved in the pathogenesis of Alzheimer's disease (AD). Prenatal stress (PS) can affect brain maturation and neuroimmune and metabolic interactions, leading to age-dependent cognitive deficits in offspring. However, a multi-faceted cause-and-effect impact of PS on the development of cognitive deficits in the process of physiological ageing and in the APPNL-F/NL-F mouse model of Alzheimer's disease has not yet been evaluated. We have identified age-dependent cognitive learning and memory deficits using male C57BL/6 J (wild type, WT) and the knock-in APPNL-F/NL-F (KI) aged 12, 15, and 18 months. An increase in the Aß42/Aß40 ratio and mouse ApoE levels in the hippocampus and frontal cortex preceded the onset of cognitive deficits in the KI mice. Moreover, dysfunction in insulin signaling, including increased IRS-1 serine phosphorylation in both brain areas and the tyrosine phosphorylation deficit in the frontal cortex, suggested age-dependent insulin/IGF-1 resistance. Resistance was reflected by disturbances in mTOR or ERK1/2 kinase phosphorylation and excessive pro-inflammatory (TNF-α, IL-6, and IL-23) status in the KI mice. Importantly, our study has provided insights into the higher vulnerability to PS-induced exacerbation of age-dependent cognitive deficits and biochemical dysfunction in KI mice than in WT animals. We anticipate our study will lead to future investigation of a multi-faceted cause-and-effect relationship between stress during neurodevelopment and the onset of AD pathology, distinguishing it from changes in the course of dementia during normal ageing.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Femenino , Embarazo , Masculino , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Insulina , Ratones Transgénicos , Ratones Endogámicos C57BL , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
4.
Alzheimers Dement ; 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36479795

RESUMEN

Disturbances in the brain's capacity to meet its energy demand increase the risk of synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic interventions that target metabolic pathways combined with diagnostics to identify deficits in cerebral bioenergetics may therefore offer novel therapeutic potential for Alzheimer's disease (AD) prevention and management. Many diet-derived natural bioactive components can govern cellular energy metabolism but their effects on brain aging are not clear. This review examines how nutritional metabolism can regulate brain bioenergetics and mitigate AD risk. We focus on leading mechanisms of cerebral bioenergetic breakdown in the aging brain at the cellular level, as well as the putative causes and consequences of disturbed bioenergetics, particularly at the blood-brain barrier with implications for nutrient brain delivery and nutritional interventions. Novel therapeutic nutrition approaches including diet patterns are provided, integrating studies of the gut microbiome, neuroimaging, and other biomarkers to guide future personalized nutritional interventions.

5.
Mol Psychiatry ; 25(9): 2144-2161, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30089788

RESUMEN

Aggression is frequently observed in neurodevelopmental psychiatric disorders such as schizophrenia, autism, and bipolar disorder. Due to a lack of understanding of its underlying mechanisms, effective treatments for abnormal aggression are still missing. Recently, genetic variations in Sialyltransferase 2 (St8sia2) have been linked to these disorders and aggression. Here we identify abnormal aggressive behaviors and concomitant blunted fear learning in St8sia2 knockout (-/-) mice. It is worth noting that the amygdala of St8sia2-/- mice shows diminished threat-induced activation, as well as alterations in synaptic structure and function, including impaired GluN2B-containing NMDA receptor-mediated synaptic transmission and plasticity. Pharmacological rescue of NMDA receptor activity in the amygdala of St8sia2-/- mice with the partial agonist D-cycloserine restores synaptic plasticity and normalizes behavioral aberrations. Pathological aggression and associated traits were recapitulated by specific amygdala neonatal St8sia2 silencing. Our results establish a developmental link between St8sia2 deficiency and a pathological aggression syndrome, specify synaptic targets for therapeutic developments, and highlight D-cycloserine as a plausible treatment.


Asunto(s)
Agresión , Amígdala del Cerebelo , Receptores de N-Metil-D-Aspartato , Sialiltransferasas , Amígdala del Cerebelo/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sialiltransferasas/genética
6.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34830009

RESUMEN

It is becoming increasingly apparent that long-term memory formation relies on a distributed network of brain areas. While the hippocampus has been at the center of attention for decades, it is now clear that other regions, in particular the medial prefrontal cortex (mPFC), are taking an active part as well. Recent evidence suggests that the mPFC-traditionally implicated in the long-term storage of memories-is already critical for the early phases of memory formation such as encoding. In this review, we summarize these findings, relate them to the functional importance of the mPFC connectivity, and discuss the role of the mPFC during memory consolidation with respect to the different theories of memory storage. Owing to its high functional connectivity to other brain areas subserving memory formation and storage, the mPFC emerges as a central hub across the lifetime of a memory, although much still remains to be discovered.


Asunto(s)
Miedo/fisiología , Hipocampo/fisiología , Memoria a Largo Plazo/fisiología , Corteza Prefrontal/fisiología , Animales , Mapeo Encefálico , Humanos
7.
Opt Express ; 28(24): 36643-36655, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33379754

RESUMEN

Despite the existence of various neural recording and mapping techniques, there is an open territory for the emergence of novel techniques. The current neural imaging and recording techniques suffer from invasiveness, a time-consuming labeling process, poor spatial/ temporal resolution, and noisy signals. Among others, neuroplasmonics is a label-free and nontoxic recording technique with no issue of photo-bleaching or signal-averaging. We introduced an integrated plasmonic-ellipsometry platform for membrane activity detection with cost-effective and high-quality grating extracted from commercial DVDs. With ellipsometry technique, one can measure both amplitude (intensity) and phase difference of reflected light simultaneously with high signal to noise ratio close to surface plasmon resonances, which leads to the enhancement of sensitivity in plasmonic techniques. We cultured three different types of cells (primary hippocampal neurons, neuroblastoma SH-SY5Y cells, and human embryonic kidney 293 (HEK293) cells) on the grating surface. By introducing KCl solution as a chemical stimulus, we can differentiate the neural activity of distinct cell types and observe the signaling event in a label-free, optical recording platform. This method has potential applications in recording neural signal activity without labeling and stimulation artifacts.


Asunto(s)
Técnicas Biosensibles/métodos , Membrana Celular/fisiología , Hipocampo/citología , Neuroblastoma/patología , Neuronas/citología , Resonancia por Plasmón de Superficie/métodos , Animales , Células HEK293/citología , Humanos , Ratas , Células Tumorales Cultivadas
8.
Physiol Rev ; 91(2): 603-49, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21527733

RESUMEN

Over the past decade, it has become increasingly obvious that epigenetic mechanisms are an integral part of a multitude of brain functions that range from the development of the nervous system over basic neuronal functions to higher order cognitive processes. At the same time, a substantial body of evidence has surfaced indicating that several neurodevelopmental, neurodegenerative, and neuropsychiatric disorders are in part caused by aberrant epigenetic modifications. Because of their inherent plasticity, such pathological epigenetic modifications are readily amenable to pharmacological interventions and have thus raised justified hopes that the epigenetic machinery provides a powerful new platform for therapeutic approaches against these diseases. In this review, we give a detailed overview of the implication of epigenetic mechanisms in both physiological and pathological brain processes and summarize the state-of-the-art of "epigenetic medicine" where applicable. Despite, or because of, these new and exciting findings, it is becoming apparent that the epigenetic machinery in the brain is highly complex and intertwined, which underscores the need for more refined studies to disentangle brain-region and cell-type specific epigenetic codes in a given environmental condition. Clearly, the brain contains an epigenetic "hotspot" with a unique potential to not only better understand its most complex functions, but also to treat its most vicious diseases.


Asunto(s)
Química Encefálica/genética , Encefalopatías/genética , Epigénesis Genética/fisiología , Epigenómica , Expresión Génica/fisiología , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Genes del Desarrollo/genética , Genes del Desarrollo/fisiología , Humanos , Trastornos Mentales/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Terminología como Asunto
9.
Nat Rev Neurosci ; 14(2): 97-111, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23324667

RESUMEN

Long-lasting memories require specific gene expression programmes that are, in part, orchestrated by epigenetic mechanisms. Of the epigenetic modifications identified in cognitive processes, histone acetylation has spurred considerable interest. Whereas increments in histone acetylation have consistently been shown to favour learning and memory, a lack thereof has been causally implicated in cognitive impairments in neurodevelopmental disorders, neurodegeneration and ageing. As histone acetylation and cognitive functions can be pharmacologically restored by histone deacetylase inhibitors, this epigenetic modification might constitute a molecular memory aid on the chromatin and, by extension, a new template for therapeutic interventions against cognitive frailty.


Asunto(s)
Cromatina/genética , Cromatina/fisiología , Histonas/genética , Histonas/metabolismo , Memoria/fisiología , Acetilación , Envejecimiento , Animales , Trastornos del Conocimiento/enzimología , Trastornos del Conocimiento/genética , Epigénesis Genética , Histona Desacetilasa 2/antagonistas & inhibidores , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/fisiología , Humanos , Plasticidad Neuronal/fisiología
10.
Nature ; 483(7388): 222-6, 2012 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-22388814

RESUMEN

Cognitive decline is a debilitating feature of most neurodegenerative diseases of the central nervous system, including Alzheimer's disease. The causes leading to such impairment are only poorly understood and effective treatments are slow to emerge. Here we show that cognitive capacities in the neurodegenerating brain are constrained by an epigenetic blockade of gene transcription that is potentially reversible. This blockade is mediated by histone deacetylase 2, which is increased by Alzheimer's-disease-related neurotoxic insults in vitro, in two mouse models of neurodegeneration and in patients with Alzheimer's disease. Histone deacetylase 2 associates with and reduces the histone acetylation of genes important for learning and memory, which show a concomitant decrease in expression. Importantly, reversing the build-up of histone deacetylase 2 by short-hairpin-RNA-mediated knockdown unlocks the repression of these genes, reinstates structural and synaptic plasticity, and abolishes neurodegeneration-associated memory impairments. These findings advocate for the development of selective inhibitors of histone deacetylase 2 and suggest that cognitive capacities following neurodegeneration are not entirely lost, but merely impaired by this epigenetic blockade.


Asunto(s)
Encéfalo/fisiopatología , Epigénesis Genética , Histona Desacetilasa 2/genética , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Acetilación/efectos de los fármacos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/toxicidad , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Histona Desacetilasa 2/deficiencia , Histona Desacetilasa 2/metabolismo , Histonas/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Trastornos de la Memoria/complicaciones , Ratones , Enfermedades Neurodegenerativas/complicaciones , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Fragmentos de Péptidos/toxicidad , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , Receptores de Glucocorticoides/metabolismo
11.
Proc Natl Acad Sci U S A ; 112(23): 7291-6, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-25995364

RESUMEN

Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation.


Asunto(s)
Complejo Nuclear Basolateral/fisiopatología , Quinasa 5 Dependiente de la Ciclina/metabolismo , Hipocampo/fisiopatología , Discapacidades para el Aprendizaje/fisiopatología , Trastornos de la Memoria/fisiopatología , Animales , Complejo Nuclear Basolateral/efectos de la radiación , Hipocampo/efectos de la radiación , Luz , Ratones , Estrés Fisiológico
12.
Synapse ; 71(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28105729

RESUMEN

The brain's neocortex is anatomically organized into grey and white matter, which are mainly composed by neuronal and glial cells, respectively. The neocortex can be further divided in different Brodmann areas according to their cytoarchitectural organization, which are associated with distinct cortical functions. There is increasing evidence that brain development and function are governed by epigenetic processes, yet their contribution to the functional organization of the neocortex remains incompletely understood. Herein, we determined the DNA methylation patterns of grey and white matter of dorsolateral prefrontal cortex (Brodmann area 9), an important region for higher cognitive skills that is particularly affected in various neurological diseases. For avoiding interindividual differences, we analyzed white and grey matter from the same donor using whole genome bisulfite sequencing, and for validating their biological significance, we used Infinium HumanMethylation450 BeadChip and pyrosequencing in ten and twenty independent samples, respectively. The combination of these analysis indicated robust grey-white matter differences in DNA methylation. What is more, cell type-specific markers were enriched among the most differentially methylated genes. Interestingly, we also found an outstanding number of grey-white matter differentially methylated genes that have previously been associated with Alzheimer's, Parkinson's, and Huntington's disease, as well as Multiple and Amyotrophic lateral sclerosis. The data presented here thus constitute an important resource for future studies not only to gain insight into brain regional as well as grey and white matter differences, but also to unmask epigenetic alterations that might underlie neurological and neurodegenerative diseases.


Asunto(s)
Metilación de ADN , Sustancia Gris/metabolismo , Corteza Prefrontal/metabolismo , Sustancia Blanca/metabolismo , Anciano , Femenino , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Especificidad de Órganos
13.
Learn Mem ; 23(10): 544-55, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27634145

RESUMEN

How fear is represented in the brain has generated a lot of research attention, not only because fear increases the chances for survival when appropriately expressed but also because it can lead to anxiety and stress-related disorders when inadequately processed. In this review, we summarize recent progress in the understanding of the neural circuits processing innate fear in rodents. We propose that these circuits are contained within three main functional units in the brain: a detection unit, responsible for gathering sensory information signaling the presence of a threat; an integration unit, responsible for incorporating the various sensory information and recruiting downstream effectors; and an output unit, in charge of initiating appropriate bodily and behavioral responses to the threatful stimulus. In parallel, the experience of innate fear also instructs a learning process leading to the memorization of the fearful event. Interestingly, while the detection, integration, and output units processing acute fear responses to different threats tend to be harbored in distinct brain circuits, memory encoding of these threats seems to rely on a shared learning system.


Asunto(s)
Encéfalo/fisiología , Miedo/fisiología , Animales , Humanos , Memoria/fisiología , Actividad Motora/fisiología , Vías Nerviosas/fisiología , Roedores
14.
Annu Rev Pharmacol Toxicol ; 53: 311-30, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23294310

RESUMEN

Histone acetylation is a prominent epigenetic modification of the central nervous system that is unequivocally associated with an increase in the rate of gene transcription. Because gene transcription, in turn, plays an important role in long-lasting forms of memory, histone acetylation generally favors long-term memory, whereas histone deacetylation impinges on it. Histone acetylation is also amenable to pharmacological interventions-predominantly by the use of histone deacetylase (HDAC) inhibitors-and has therefore spurred considerable interest as a putative target of cognitive enhancement. Because of the ubiquitous presence of histone acetylation, HDAC inhibitors have great potential not only to treat cognitive impairment resulting from neurodevelopmental and neurodegenerative disorders but also to serve as cognitive enhancers for the cognitively healthy. In this review, we summarize the state of the art of HDAC inhibitors as cognitive treatments or cognitive enhancers; describe a new model of their mode of action, epigenetic priming; and caution against their unsupervised usage, despite their overall great promise.


Asunto(s)
Trastornos del Conocimiento/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Nootrópicos/farmacología , Nootrópicos/uso terapéutico , Animales , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/metabolismo , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos
15.
EMBO J ; 36(19): 2809-2811, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28923823
16.
EMBO Rep ; 15(8): 853-61, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25027989

RESUMEN

How to attenuate traumatic memories has long been the focus of intensive research efforts, as traumatic memories are extremely persistent and heavily impinge on the quality of life. Despite the fact that traumatic memories are often not readily amenable to immediate intervention, surprisingly few studies have investigated treatment options for remote traumata in animal models. The few that have unanimously concluded that exposure therapy-based approaches, the most successful behavioral intervention for the attenuation of recent forms of traumata in humans, fail to effectively reduce remote fear memories. Here, we provide an overview of these animal studies with an emphasis on why remote traumatic memories might be refractory to behavioral interventions: A lack of neuroplasticity in brain areas relevant for learning and memory emerges as a common denominator of such resilience. We then outline the findings of a recent study in mice showing that by combining exposure therapy-like approaches with small molecule inhibitors of histone deacetylases (HDACis), even remote memories can be persistently attenuated. This pharmacological intervention reinstated neuroplasticity to levels comparable to those found upon successful attenuation of recent memories. Thus, HDACis-or any other agent capable of heightening neuroplasticity-in conjunction with exposure therapy-based treatments might constitute a promising approach to overcome remote traumata.


Asunto(s)
Resiliencia Psicológica , Trastornos por Estrés Postraumático/terapia , Adaptación Psicológica , Animales , Terapia Cognitivo-Conductual , Terapia Combinada , Modelos Animales de Enfermedad , Miedo , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Memoria a Largo Plazo , Plasticidad Neuronal , Trastornos por Estrés Postraumático/psicología
17.
Nature ; 466(7310): 1105-9, 2010 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-20622856

RESUMEN

The NAD-dependent deacetylase Sir2 was initially identified as a mediator of replicative lifespan in budding yeast and was subsequently shown to modulate longevity in worms and flies. Its mammalian homologue, SIRT1, seems to have evolved complex systemic roles in cardiac function, DNA repair and genomic stability. Recent studies suggest a functional relevance of SIRT1 in normal brain physiology and neurological disorders. However, it is unknown if SIRT1 has a role in higher-order brain functions. We report that SIRT1 modulates synaptic plasticity and memory formation via a microRNA-mediated mechanism. Activation of SIRT1 enhances, whereas its loss-of-function impairs, synaptic plasticity. Surprisingly, these effects were mediated via post-transcriptional regulation of cAMP response binding protein (CREB) expression by a brain-specific microRNA, miR-134. SIRT1 normally functions to limit expression of miR-134 via a repressor complex containing the transcription factor YY1, and unchecked miR-134 expression following SIRT1 deficiency results in the downregulated expression of CREB and brain-derived neurotrophic factor (BDNF), thereby impairing synaptic plasticity. These findings demonstrate a new role for SIRT1 in cognition and a previously unknown microRNA-based mechanism by which SIRT1 regulates these processes. Furthermore, these results describe a separate branch of SIRT1 signalling, in which SIRT1 has a direct role in regulating normal brain function in a manner that is disparate from its cell survival functions, demonstrating its value as a potential therapeutic target for the treatment of central nervous system disorders.


Asunto(s)
Memoria/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Plasticidad Neuronal/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a CREB/metabolismo , Sinapsis Eléctricas/genética , Sinapsis Eléctricas/patología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Potenciación a Largo Plazo/genética , Masculino , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Ratones , Unión Proteica , Eliminación de Secuencia
18.
Neural Plast ; 2016: 3425908, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26933513

RESUMEN

Our memories are the records of the experiences we gain in our everyday life. Over time, they slowly transform from an initially unstable state into a long-lasting form. Many studies have been investigating from different aspects how a memory could persist for sometimes up to decades. In this review, we highlight three of the greatly addressed mechanisms that play a central role for a given memory to endure: the allocation of the memory to a given neuronal population and what brain areas are recruited for its storage; the structural changes that underlie memory persistence; and finally the epigenetic control of gene expression that might regulate and support memory perseverance. Examining such key properties of a memory is essential towards a finer understanding of its capacity to last.


Asunto(s)
Encéfalo/fisiología , Epigénesis Genética , Memoria/fisiología , Plasticidad Neuronal , Neuronas/fisiología , Sinapsis/fisiología , Animales , Encéfalo/metabolismo , Espinas Dendríticas/genética , Espinas Dendríticas/fisiología , Humanos , Ratones , Neuronas/metabolismo , Ratas , Sinapsis/genética
19.
J Neurosci ; 33(21): 8951-60, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23699506

RESUMEN

Caloric restriction (CR) is a dietary regimen known to promote lifespan by slowing down the occurrence of age-dependent diseases. The greatest risk factor for neurodegeneration in the brain is age, from which follows that CR might also attenuate the progressive loss of neurons that is often associated with impaired cognitive capacities. In this study, we used a transgenic mouse model that allows for a temporally and spatially controlled onset of neurodegeneration to test the potentially beneficial effects of CR. We found that in this model, CR significantly delayed the onset of neurodegeneration and synaptic loss and dysfunction, and thereby preserved cognitive capacities. Mechanistically, CR induced the expression of the known lifespan-regulating protein SIRT1, prompting us to test whether a pharmacological activation of SIRT1 might recapitulate CR. We found that oral administration of a SIRT1-activating compound essentially replicated the beneficial effects of CR. Thus, SIRT1-activating compounds might provide a pharmacological alternative to the regimen of CR against neurodegeneration and its associated ailments.


Asunto(s)
Restricción Calórica/métodos , Trastornos del Conocimiento/terapia , Enfermedades Neurodegenerativas/complicaciones , Sirtuina 1/metabolismo , Análisis de Varianza , Animales , Atrofia/etiología , Atrofia/prevención & control , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/ultraestructura , Estudios de Casos y Controles , Trastornos del Conocimiento/etiología , Quinasa 5 Dependiente de la Ciclina/genética , Modelos Animales de Enfermedad , Método Doble Ciego , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Proteínas Fluorescentes Verdes/genética , Inmunoprecipitación , Técnicas In Vitro , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/prevención & control , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/patología , Fosfopiruvato Hidratasa/metabolismo , Fosfotransferasas , Piperidinas/uso terapéutico , Tinción con Nitrato de Plata , Sirtuina 1/genética , Sinapsis/patología , Tiazoles/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo , Vitamina E/administración & dosificación
20.
Adv Neurobiol ; 38: 149-161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008015

RESUMEN

Fear attenuation is an etiologically relevant process for animal survival, since once acquired information needs to be continuously updated in the face of changing environmental contingencies. Thus, when situations are encountered that were originally perceived as fearful but are no longer so, fear must be attenuated, otherwise, it risks becoming maladaptive. But what happens to the original memory trace of fear during fear attenuation? In this chapter, we review the studies that have started to approach this question from an engram perspective. We find evidence pointing to both the original memory trace of fear being suppressed, as well as it being updated towards safety. These seemingly conflicting results reflect a well-established dichotomy in the field of fear memory attenuation, namely whether fear attenuation is mediated by an inhibitory mechanism that suppresses fear expression, called extinction, or by an updating mechanism that allows the fear memory to reconsolidate in a different form, called reconsolidation-updating. Which of these scenarios takes the upper hand is ultimately influenced by the behavioral paradigms used to induce fear attenuation, but is an important area for further study as the precise cell populations underlying fear attenuation and the molecular mechanisms therein can now be understood at unprecedented resolution.


Asunto(s)
Extinción Psicológica , Miedo , Memoria , Animales , Humanos , Consolidación de la Memoria/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA