RESUMEN
BACKGROUND: Prostate cancer (PC) is a heterogenous multifocal disease ranging from indolent to lethal states. For improved treatment-stratification, reliable approaches are needed to faithfully differentiate between high- and low-risk tumors and to predict therapy response at diagnosis. METHODS: A metabolomic approach based on high resolution magic angle spinning nuclear magnetic resonance (HR MAS NMR) analysis was applied on intact biopsies samples (n = 111) obtained from patients (n = 31) treated by prostatectomy, and combined with advanced multi- and univariate statistical analysis methods to identify metabolomic profiles reflecting tumor differentiation (Gleason scores and the International Society of Urological Pathology (ISUP) grade) and subtypes based on tumor immunoreactivity for Ki67 (cell proliferation) and prostate specific antigen (PSA, marker for androgen receptor activity). RESULTS: Validated metabolic profiles were obtained that clearly distinguished cancer tissues from benign prostate tissues. Subsequently, metabolic signatures were identified that further divided cancer tissues into two clinically relevant groups, namely ISUP Grade 2 (n = 29) and ISUP Grade 3 (n = 17) tumors. Furthermore, metabolic profiles associated with different tumor subtypes were identified. Tumors with low Ki67 and high PSA (subtype A, n = 21) displayed metabolite patterns significantly different from tumors with high Ki67 and low PSA (subtype B, n = 28). In total, seven metabolites; choline, peak for combined phosphocholine/glycerophosphocholine metabolites (PC + GPC), glycine, creatine, combined signal of glutamate/glutamine (Glx), taurine and lactate, showed significant alterations between PC subtypes A and B. CONCLUSIONS: The metabolic profiles of intact biopsies obtained by our non-invasive HR MAS NMR approach together with advanced chemometric tools reliably identified PC and specifically differentiated highly aggressive tumors from less aggressive ones. Thus, this approach has proven the potential of exploiting cancer-specific metabolites in clinical settings for obtaining personalized treatment strategies in PC.
Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Masculino , Humanos , Antígeno Ki-67/metabolismo , Neoplasias de la Próstata/patología , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Magnética , MetabolómicaRESUMEN
Programmed mammalian cell death (apoptosis) is an essential mechanism in life that tightly regulates embryogenesis and removal of dysfunctional cells. In its intrinsic (mitochondrial) pathway, opposing members of the Bcl-2 (B cell lymphoma 2) protein family meet at the mitochondrial outer membrane (MOM) to control its integrity. Any imbalance can cause disorders, with upregulation of the cell-guarding antiapoptotic Bcl-2 protein itself being common in many, often incurable, cancers. Normally, the Bcl-2 protein itself is embedded in the MOM where it sequesters cell-killing apoptotic proteins such as Bax (Bcl-2-associated X protein) that would otherwise perforate the MOM and subsequently cause cell death. However, the molecular basis of Bcl-2's ability to recognize those apoptotic proteins via their common BH3 death motifs remains elusive due to the lack of structural insight. By employing nuclear magnetic resonance on fully functional human Bcl-2 protein in membrane-mimicking micelles, we identified glycine residues across all functional domains of the Bcl-2 protein and could monitor their residue-specific individual response upon the presence of a Bax-derived 36aa long BH3 domain. The observed chemical shift perturbations allowed us to determine the response and individual affinity of each glycine residue and provide an overall picture of the individual roles by which Bcl-2's functional domains engage in recognizing and inhibiting apoptotic proteins via their prominent BH3 motifs. This way, we provide a unique residue- and domain-specific insight into the molecular functioning of Bcl-2 at the membrane level, an insight also opening up for interfering with this cell-protecting mechanism in cancer therapy.
Asunto(s)
Proteínas Proto-Oncogénicas c-bcl-2 , HumanosRESUMEN
Evasion from programmed cell death (apoptosis) is the main hallmark of cancer and a major cause of resistance to therapy. Many tumors simply ensure survival by over-expressing the cell-protecting (anti-apoptotic) Bcl-2 membrane protein involved in apoptotic regulation. However, the molecular mechanism by which Bcl-2 protein in its mitochondrial outer membrane location protects cells remains elusive due to the absence of structural insight; and current strategies to therapeutically interfere with these Bcl-2 sensitive cancers are limited. Here, we present an NMR-based approach to enable structural insight into Bcl-2 function; an approach also ideal as a fragment-based drug discovery platform for further identification and development of promising molecular Bcl-2 inhibitors. By using solution NMR spectroscopy on fully functional intact human Bcl-2 protein in a membrane-mimicking micellar environment, and constructs with specific functions remaining, we present a strategy for structure determination and specific drug screening of functional subunits of the Bcl-2 protein as targets. Using 19F NMR and a specific fragment library (Bionet) with fluorinated compounds we can successfully identify various binders and validate our strategy in the hunt for novel Bcl-2 selective cancer drug strategies to treat currently incurable Bcl-2 sensitive tumors.
Asunto(s)
Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos , Humanos , Espectroscopía de Resonancia Magnética/métodos , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Modelos Moleculares , Unión Proteica/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/genéticaRESUMEN
BACKGROUND: Prostate cancer (PC) can display very heterogeneous phenotypes ranging from indolent asymptomatic to aggressive lethal forms. Understanding how these PC subtypes vary in their striving for energy and anabolic molecules is of fundamental importance for developing more effective therapies and diagnostics. Here, we carried out an extensive analysis of prostate tissue samples to reveal metabolic alterations during PC development and disease progression and furthermore between TMPRSS2-ERG rearrangement-positive and -negative PC subclasses. METHODS: Comprehensive metabolomics analysis of prostate tissue samples was performed by non-destructive high-resolution magic angle spinning nuclear magnetic resonance (1H HR MAS NMR). Subsequently, samples underwent moderate extraction, leaving tissue morphology intact for histopathological characterization. Metabolites in tissue extracts were identified by 1H/31P NMR and liquid chromatography-mass spectrometry (LC-MS). These metabolomics profiles were analyzed by chemometric tools and the outcome was further validated using proteomic data from a separate sample cohort. RESULTS: The obtained metabolite patterns significantly differed between PC and benign tissue and between samples with high and low Gleason score (GS). Five key metabolites (phosphocholine, glutamate, hypoxanthine, arginine and α-glucose) were identified, who were sufficient to differentiate between cancer and benign tissue and between high to low GS. In ERG-positive PC, the analysis revealed several acylcarnitines among the increased metabolites together with decreased levels of proteins involved in ß-oxidation; indicating decreased acyl-CoAs oxidation in ERG-positive tumors. The ERG-positive group also showed increased levels of metabolites and proteins involved in purine catabolism; a potential sign of increased DNA damage and oxidative stress. CONCLUSIONS: Our comprehensive metabolomic analysis strongly indicates that ERG-positive PC and ERG-negative PC should be considered as different subtypes of PC; a fact requiring different, sub-type specific treatment strategies for affected patients.
Asunto(s)
Biomarcadores de Tumor/análisis , Metaboloma , Proteínas de Fusión Oncogénica/genética , Neoplasias de la Próstata/patología , Estudios de Seguimiento , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Clasificación del Tumor , Prostatectomía , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/cirugíaRESUMEN
Programmed cell death (apoptosis) is an essential mechanism in life that tightly regulates embryogenesis and removal of harmful cells. Besides an extrinsic pathway, an intrinsic (mitochondrial) apoptotic pathway exists where mitochondria are actively involved in cellular clearance in response to internal stress signals. Pro-apoptotic (death) and anti-apoptotic (survival) members of the B cell CLL/lymphoma-2 (Bcl-2) protein family meet at the mitochondrion's surface where they accurately regulate apoptosis. Overexpression of the anti-apoptotic Bcl-2 protein is a hallmark for many types of cancers and in particular for many treatment resistant tumors. Bcl-2 is a membrane protein residing in the mitochondrial outer membrane. Due to its typical membrane protein features including very limited solubility, it is difficult to express and to purify. Therefore, most biophysical and structural studies have used truncated, soluble versions. However, to understand its membrane-coupled function and structure, access to sufficient amount of full-length human Bcl-2 protein is a necessity. Here, we present a novel, E. coli based approach for expression and purification of preparative amounts of the full-length human isoform 2 of Bcl-2 (Bcl-2(2)), solubilized in detergent micelles, which allows for easy exchange of the detergent.
Asunto(s)
Expresión Génica , Proteínas de la Membrana , Proteínas Proto-Oncogénicas c-bcl-2 , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteínas Proto-Oncogénicas c-bcl-2/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificaciónRESUMEN
Mitochondria-mediated apoptosis (programmed cell death) involves a sophisticated signaling and regulatory network that is regulated by the Bcl-2 protein family. Members of this family have either pro- or anti-apoptotic functions. An important pro-apoptotic member of this family is the cytosolic Bax. This protein is crucial for the onset of apoptosis by perforating the mitochondrial outer membrane (MOM). This process can be seen as point of no return, since disintegration of the MOM leads to the release of apotogenic factors such as cytochrome c into the cytosol triggering the activation of caspases and subsequent apoptotic steps. Bax is able to interact with the MOM with both its termini, making it inherently difficult to express in E. coli. In this study, we present a novel approach to express and purify full-length Bax with significantly increased yields, when compared to the commonly applied strategy. Using a double fusion approach with an N-terminal GST-tag and a C-terminal Intein-CBD-tag, we were able to render both Bax termini inactive and prevent disruptive interactions from occurring during gene expression. By deploying an Intein-CBD-tag at the C-terminus we were further able to avoid the introduction of any artificial residues, hence ensuring the native like activity of the membrane-penetrating C-terminus of Bax. Further, by engineering a His6-tag to the C-terminus of the CBD-tag we greatly improved the robustness of the purification procedure. We report yields for pure, full-length Bax protein that are increased by an order of magnitude, when compared to commonly used Bax expression protocols.
Asunto(s)
Expresión Génica , Proteínas Recombinantes de Fusión , Proteína X Asociada a bcl-2 , Cristalografía por Rayos X , Humanos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteína X Asociada a bcl-2/biosíntesis , Proteína X Asociada a bcl-2/química , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/aislamiento & purificaciónRESUMEN
Mitochondria are crucial compartments of eukaryotic cells because they function as the cellular power plant and play a central role in the early stages of programmed cell death (apoptosis). To avoid undesired cell death, this apoptotic pathway is tightly regulated by members of the Bcl-2 protein family, which interact on the external surface of the mitochondria, i.e., the mitochondrial outer membrane (MOM), and modulate its permeability to apoptotic factors, controlling their release into the cytosol. A growing body of evidence suggests that the MOM lipids play active roles in this permeabilization process. In particular, oxidized phospholipids (OxPls) formed under intracellular stress seem to directly induce apoptotic activity at the MOM. Here we show that the process of MOM pore formation is sensitive to the type of OxPls species that are generated. We created MOM-mimicking liposome systems, which resemble the cellular situation before apoptosis and upon triggering of oxidative stress conditions. These vesicles were studied using 31P solid-state magic-angle-spinning nuclear magnetic resonance spectroscopy and differential scanning calorimetry, together with dye leakage assays. Direct polarization and cross-polarization nuclear magnetic resonance experiments enabled us to probe the heterogeneity of these membranes and their associated molecular dynamics. The addition of apoptotic Bax protein to OxPls-containing vesicles drastically changed the membranes' dynamic behavior, almost completely negating the previously observed effect of temperature on the lipids' molecular dynamics and inducing an ordering effect that led to more cooperative membrane melting. Our results support the hypothesis that the mitochondrion-specific lipid cardiolipin functions as a first contact site for Bax during its translocation to the MOM in the onset of apoptosis. In addition, dye leakage assays revealed that different OxPls species in the MOM-mimicking vesicles can have opposing effects on Bax pore formation.
Asunto(s)
Apoptosis/fisiología , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Rastreo Diferencial de Calorimetría , Cardiolipinas/metabolismo , Permeabilidad de la Membrana Celular , Escherichia coli , Colorantes Fluorescentes , Humanos , Membrana Dobles de Lípidos/química , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Estrés Oxidativo/fisiología , Fosfolípidos/metabolismo , Temperatura , Liposomas Unilamelares/químicaRESUMEN
Mitochondria play a crucial role in programmed cell death via the intrinsic apoptotic pathway, which is tightly regulated by the B-cell CLL/lymphoma-2 (Bcl-2) protein family. Intracellular oxidative stress causes the translocation of Bax, a pro-apoptotic family member, to the mitochondrial outer membrane (MOM) where it induces membrane permeabilization. Oxidized phospholipids (OxPls) generated in the MOM during oxidative stress directly affect the onset and progression of mitochondria-mediated apoptosis. Here we use MOM-mimicking lipid vesicles doped with varying concentrations of 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), an OxPl species known to significantly enhance Bax-membrane association, to investigate three key aspects of Bax's action at the MOM: 1) induction of Bax pores in membranes without additional mediator proteins, 2) existence of a threshold OxPl concentration required for Bax-membrane action and 3) mechanism by which PazePC disturbs membrane organization to facilitate Bax penetration. Fluorescence leakage studies revealed that Bax-induced leakage, especially its rate, increased with the vesicles' PazePC content without any detectable threshold neither for OxPl nor Bax. Moreover, the leakage rate correlated with the Bax to lipid ratio and the PazePC content. Solid state NMR studies and calorimetric experiments on the lipid vesicles confirmed that OxPl incorporation disrupted the membrane's organization, enabling Bax to penetrate into the membrane. In addition, 15N cross polarization (CP) and insensitive nuclei enhanced by polarization transfer (INEPT) MAS NMR experiments using uniformly (15)N-labeled Bax revealed dynamically restricted helical segments of Bax embedded in the membrane, while highly flexible protein segments were located outside or at the membrane surface.
Asunto(s)
Membranas Mitocondriales/metabolismo , Fosforilcolina/análogos & derivados , Proteína X Asociada a bcl-2/metabolismo , Rastreo Diferencial de Calorimetría , Espectroscopía de Resonancia Magnética con Carbono-13 , Humanos , Oxidación-Reducción , Permeabilidad , Fosforilcolina/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Liposomas UnilamelaresRESUMEN
The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia.
Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Membrana Celular/química , Lípidos de la Membrana/química , Desplegamiento Proteico , Yersinia/química , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sistemas de Secreción Bacterianos , Lípidos de la Membrana/metabolismo , Micelas , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Electricidad EstáticaRESUMEN
Dehydrins are intrinsically disordered plant proteins whose expression is upregulated under conditions of desiccation and cold stress. Their molecular function in ensuring plant survival is not yet known, but several studies suggest their involvement in membrane stabilization. The dehydrins are characterized by a broad repertoire of conserved and repetitive sequences, out of which the archetypical K-segment has been implicated in membrane binding. To elucidate the molecular mechanism of these K-segments, we examined the interaction between lipid membranes and a dehydrin with a basic functional sequence composition: Lti30, comprising only K-segments. Our results show that Lti30 interacts electrostatically with vesicles of both zwitterionic (phosphatidyl choline) and negatively charged phospholipids (phosphatidyl glycerol, phosphatidyl serine, and phosphatidic acid) with a stronger binding to membranes with high negative surface potential. The membrane interaction lowers the temperature of the main lipid phase transition, consistent with Lti30's proposed role in cold tolerance. Moreover, the membrane binding promotes the assembly of lipid vesicles into large and easily distinguishable aggregates. Using these aggregates as binding markers, we identify three factors that regulate the lipid interaction of Lti30 in vitro: (1) a pH dependent His on/off switch, (2) phosphorylation by protein kinase C, and (3) reversal of membrane binding by proteolytic digest.
Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas y Péptidos de Choque por Frío/química , Proteínas y Péptidos de Choque por Frío/metabolismo , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Rastreo Diferencial de Calorimetría , Membrana Celular/química , Proteínas y Péptidos de Choque por Frío/genética , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Fosfolípidos/química , Fosfolípidos/metabolismo , Unión Proteica , Conformación Proteica , Electricidad Estática , Resonancia por Plasmón de Superficie , Temperatura , Tilacoides/química , Tilacoides/ultraestructuraRESUMEN
The main protease Mpro, nsp5, of SARS-CoV-2 (SCoV2) is one of its most attractive drug targets. Here, we report primary screening data using nuclear magnetic resonance spectroscopy (NMR) of four different libraries and detailed follow-up synthesis on the promising uracil-containing fragment Z604 derived from these libraries. Z604 shows time-dependent binding. Its inhibitory effect is sensitive to reducing conditions. Starting with Z604, we synthesized and characterized 13 compounds designed by fragment growth strategies. Each compound was characterized by NMR and/or activity assays to investigate their interaction with Mpro. These investigations resulted in the four-armed compound 35b that binds directly to Mpro. 35b could be cocrystallized with Mpro revealing its noncovalent binding mode, which fills all four active site subpockets. Herein, we describe the NMR-derived fragment-to-hit pipeline and its application for the development of promising starting points for inhibitors of the main protease of SCoV2.
Asunto(s)
Descubrimiento de Drogas , SARS-CoV-2 , Descubrimiento de Drogas/métodos , SARS-CoV-2/metabolismo , Dominio Catalítico , Espectroscopía de Resonancia Magnética , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/metabolismo , Antivirales/farmacología , Simulación del Acoplamiento MolecularRESUMEN
Activation of the pro-apoptotic protein Bax under intracellular oxidative stress is closely related to its association with the mitochondrial outer membrane (MOM) system, ultimately resulting in cell death. The precise mechanism by which this activation and the subsequent structural changes in the protein occur is currently unknown. In addition to triggering the onset of apoptosis, oxidative stress generates oxidized lipids whose impact on mitochondrial membrane integrity and the activity of membrane-associated Bax is unclear. We therefore devised a model system that mimics oxidative stress conditions by incorporating oxidized phospholipids (OxPls) into mitochondria-like liposomes, and studied the OxPls' impact on Bax-membrane interactions. Differential scanning calorimetry (DSC) was used to study membrane organization and protein stability, while conformational changes in the protein upon contact with lipid vesicles were monitored using far-UV circular dichroism (CD) spectroscopy. The thermograms for liposomes containing the OxPl 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) differed dramatically from those for unmodified liposomes. Moreover, Bax exhibited enhanced thermal stability in the presence of the modified liposomes, indicating that it interacted strongly with PazePC-containing membranes. The presence of PazePC also increased the α-helical character of Bax compared to the protein alone or with PazePC-free vesicles, at 10°C, 20°C, and 37°C. Presumably, the presence of PazePC-like OxPls a) increases the population of membrane-associated Bax and b) facilitates the protein's insertion into the membrane by distorting the bilayer's organization, as seen by solid-state high-resolution (1)H and (31)P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy.
Asunto(s)
Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Fosforilcolina/análogos & derivados , Proteína X Asociada a bcl-2/metabolismo , Apoptosis , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Humanos , Espectroscopía de Resonancia Magnética , Estrés Oxidativo , Fosforilcolina/farmacología , Unión Proteica , Proteínas Recombinantes/metabolismoRESUMEN
Apotosis is an essential process tightly regulated by the Bcl-2 protein family where proapoptotic Bax triggers cell death by perforating the mitochondrial outer membrane. Although intensively studied, the molecular mechanism by which these proteins create apoptotic pores remains elusive. Here, we show that Bax creates pores by extracting lipids from outer mitochondrial membrane mimics by formation of Bax/lipid clusters that are deposited on the membrane surface. Time-resolved neutron reflectometry and Fourier transform infrared spectroscopy revealed two kinetically distinct phases in the pore formation process, both of which were critically dependent on cardiolipin levels. The initially fast adsorption of Bax on the mitochondrial membrane surface is followed by a slower formation of pores and Bax-lipid clusters on the membrane surface. Our findings provide a robust molecular understanding of mitochondrial membrane perforation by cell-killing Bax protein and illuminate the initial phases of programmed cellular death.
Asunto(s)
Apoptosis , Membranas Mitocondriales , Membranas Mitocondriales/metabolismo , Proteína X Asociada a bcl-2/química , Proteína X Asociada a bcl-2/metabolismo , Apoptosis/fisiología , Cardiolipinas/metabolismoRESUMEN
Morphology of aggregation intermediates, polymorphism of amyloid fibrils and aggregation kinetics of the "Arctic" mutant of the Alzheimer's amyloid ß-peptide, Aß((1-40))(E22G), in a physiologically relevant Tris buffer (pH 7.4) were thoroughly explored in comparison with the human wild type Alzheimer's amyloid peptide, wt-Aß((1-40)), using both in situ atomic force and electron microscopy, circular dichroism and thioflavin T fluorescence assays. For arc-Aß((1-40)) at the end of the 'lag'-period of fibrillization an abrupt appearance of ≈ 3 nm size 'spherical aggregates' with a homogeneous morphology, was identified. Then, the aggregation proceeds with a rapid growth of amyloid fibrils with a variety of morphologies, while the spherical aggregates eventually disappeared during in situ measurements. Arc-Aß((1-40)) was also shown to form fibrils at much lower concentrations than wt-Aß((1-40)): ≤ 2.5 µM and 12.5 µM, respectively. Moreover, at the same concentration, 50 µM, the aggregation process proceeds more rapidly for arc-Aß((1-40)): the first amyloid fibrils were observed after c.a. 72 h from the onset of incubation as compared to approximately 7 days for wt-Aß((1-40)). Amyloid fibrils of arc-Aß((1-40)) exhibit a large variety of polymorphs, at least five, both coiled and non-coiled distinct fibril structures were recognized by AFM, while at least four types of arc-Aß((1-40)) fibrils were identified by TEM and STEM and their mass-per-length statistics were collected suggesting supramolecular structures with two, four and six ß-sheet laminae. Our results suggest a pathway of fibrillogenesis for full-length Alzheimer's peptides with small and structurally ordered transient spherical aggregates as on-pathway immediate precursors of amyloid fibrils.
Asunto(s)
Péptidos beta-Amiloides/química , Amiloide/química , Mutación Missense , Amiloide/ultraestructura , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/ultraestructura , Tampones (Química) , Dicroismo Circular , Humanos , Cinética , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión de Rastreo , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Imagen de Lapso de TiempoRESUMEN
Organic phosphorus (P) compounds represent a major component of soil P in many soils and are key sources of P for microbes and plants. Solution NMR (nuclear magnetic resonance spectroscopy) is a powerful technique for characterizing organic P species. However, (31)P NMR spectra are often complicated by overlapping peaks, which hampers identification and quantification of the numerous P species present in soils. Overlap is often exacerbated by the presence of paramagnetic metal ions, even if they are in complexes with EDTA following NaOH/EDTA extraction. By removing paramagnetic impurities using a new precipitation protocol, we achieved a dramatic improvement in spectral resolution. Furthermore, the obtained reduction in line widths enabled the use of multidimensional NMR methods to resolve overlapping (31)P signals. Using the new protocol on samples from two boreal humus soils with different Fe contents, 2D (1)H-(31)P correlation spectra allowed unambiguous identification of a large number of P species based on their (31)P and (1)H chemical shifts and their characteristic coupling patterns, which would not have been possible using previous protocols. This approach can be used to identify organic P species in samples from both terrestrial and aquatic environments increasing our understanding of organic P biogeochemistry.
Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Compuestos Orgánicos/análisis , Fósforo/análisis , Protones , Suelo/química , Ácido Edético/química , Isótopos de Fósforo , Hidróxido de Sodio/químicaRESUMEN
Although there were experimental indications that phospholipid bilayers hydrated with D(2)O express different biophysical properties compared with hydration by ordinary H(2)O, a molecular concept for this behavior difference was only recently proposed by a molecular dynamics simulations study [T. Róg et al., J. Phys. Chem. B, 2009, 113, 2378-2387]. Here we attempt to verify those theoretical predictions by fluorescence measurements on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes. Specifically, we determine the water isotope effect on headgroup hydration and mobility, lateral lipid diffusion and lipid backbone packing. Time-dependent fluorescence shift experiments show significantly slower dynamics and lower hydration of the headgroup region for a bilayer hydrated with D(2)O, an observation in good agreement with the calculated predicted differences in duration of lipid-lipid and lipid-water bridges and extent of water penetration into the bilayer, respectively. The water isotope effect on the lipid order parameter of the bilayer core (measured by fluorescence anisotropy) and lateral diffusion of lipid molecules (determined by two-focus fluorescence correlation spectroscopy) is close to the experimental errors of the experiments, however also refers to slightly more rigid organization of phospholipid bilayers in heavy water. This study confirms the view that the water isotope effect can be particularly found in time-resolved physicochemical properties of the membrane. Together with the simulations our experiments provide a comprehensive, molecular view on the effect of D(2)O on phospholipid bilayers.
Asunto(s)
Óxido de Deuterio/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Fosfolípidos/química , Fluorescencia , Conformación Molecular , Factores de TiempoRESUMEN
The structural integrity of the ubiquitous enzyme superoxide dismutase (SOD1) relies critically on the correct coordination of Cu and Zn. Loss of these cofactors not only promotes SOD1 aggregation in vitro but also seems to be a key prerequisite for pathogenic misfolding in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We examine here the consequences of Zn(2+) loss by selectively removing the Zn site, which has been implicated as the main modulator of SOD1 stability and disease competence. After Zn-site removal, the remaining Cu ligands can coordinate a nonnative Zn(2+) ion with microM affinity in the denatured state, and then retain this ion throughout the folding reaction. Without the restriction of a metallated Zn site, however, the Cu ligands fail to correctly coordinate the nonnative Zn(2+) ion: Trapping of a water molecule causes H48 to change rotamer and swing outwards. The misligation is sterically incompatible with the native structure. As a consequence, SOD1 unfolds locally and interacts with neighboring molecules in the crystal lattice. The findings point to a critical role for the native Zn site in controlling SOD1 misfolding, and show that even subtle changes of the metal-loading sequence can render the wild-type protein the same structural properties as ALS-provoking mutations. This frustrated character of the SOD1 molecule seems to arise from a compromise between optimization of functional and structural features.
Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Pliegue de Proteína , Superóxido Dismutasa/metabolismo , Humanos , Ligandos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Superóxido Dismutasa/químicaRESUMEN
The Hsp100 family member ClpB is a protein disaggregase which solubilizes and reactivates stress-induced protein aggregates in cooperation with the DnaK/Hsp70 chaperone system. In the pathogenic bacterium Francisella tularensis, ClpB is involved in type VI secretion system (T6SS) disassembly through depolymerization of the IglA-IglB sheath. This leads to recycling and reassembly of T6SS components and this process is essential for the virulence of the bacterium. Here we report the backbone chemical shift assignments and 15N relaxation-based backbone dynamics of the N-terminal substrate-binding domain of ClpB (1-156).
Asunto(s)
Proteínas de Escherichia coli , Francisella tularensis , Sistemas de Secreción Tipo VI , Proteínas de Escherichia coli/metabolismo , Francisella tularensis/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Resonancia Magnética Nuclear Biomolecular , Sistemas de Secreción Tipo VI/metabolismo , VirulenciaRESUMEN
The α-pore-forming toxins (α-PFTs) from pathogenic bacteria damage host cell membranes by pore formation. We demonstrate a remarkable, hitherto unknown mechanism by an α-PFT protein from Vibrio cholerae. As part of the MakA/B/E tripartite toxin, MakA is involved in membrane pore formation similar to other α-PFTs. In contrast, MakA in isolation induces tube-like structures in acidic endosomal compartments of epithelial cells in vitro. The present study unravels the dynamics of tubular growth, which occurs in a pH-, lipid-, and concentration-dependent manner. Within acidified organelle lumens or when incubated with cells in acidic media, MakA forms oligomers and remodels membranes into high-curvature tubes leading to loss of membrane integrity. A 3.7 Å cryo-electron microscopy structure of MakA filaments reveals a unique protein-lipid superstructure. MakA forms a pinecone-like spiral with a central cavity and a thin annular lipid bilayer embedded between the MakA transmembrane helices in its active α-PFT conformation. Our study provides insights into a novel tubulation mechanism of an α-PFT protein and a new mode of action by a secreted bacterial toxin.
Asunto(s)
Proteínas Bacterianas/metabolismo , Citotoxinas/metabolismo , Membrana Dobles de Lípidos/química , Vibrio cholerae/patogenicidad , Línea Celular , Cólera/metabolismo , Microscopía por Crioelectrón , Humanos , Concentración de Iones de Hidrógeno , Estructura Secundaria de Proteína , Factores de Virulencia/metabolismo , Internalización del VirusRESUMEN
In good accord with the protein aggregation hypothesis for neurodegenerative diseases, ALS-associated SOD1 mutations are found to reduce structural stability or net repulsive charge. Moreover there are weak indications that the ALS disease progression rate is correlated with the degree of mutational impact on the apoSOD1 structure. A bottleneck for obtaining more conclusive information about these structure-disease relationships, however, is the large intrinsic variability in patient survival times and insufficient disease statistics for the majority of ALS-provoking mutations. As an alternative test of the structure-disease relationship we focus here on the SOD1 mutations that appear to be outliers in the data set. The results identify several ALS-provoking mutations whose only effect on apoSOD1 is the elimination or introduction of a single charge, i.e. D76V/Y, D101N, and N139D/K. The thermodynamic stability and folding behavior of these mutants are indistinguishable from the wild-type control. Moreover, D101N is an outlier in the plot of stability loss versus patient survival time by having rapid disease progression. Common to the identified mutations is that they truncate conserved salt-links and/or H-bond networks in the functional loops IV or VII. The results show that the local impact of ALS-associated mutations on the SOD1 molecule can sometimes overrun their global effects on apo-state stability and net repulsive charge, and point at the analysis of property outliers as an efficient strategy for mapping out new ALS-provoking features.