Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Horm Behav ; 161: 105501, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38368844

RESUMEN

Long-term use of anabolic androgenic steroids (AAS) in supratherapeutic doses is associated with severe adverse effects, including physical, mental, and behavioral alterations. When used for recreational purposes several AAS are often combined, and in scientific studies of the physiological impact of AAS either a single compound or a cocktail of several steroids is often used. Because of this, steroid-specific effects have been difficult to define and are not fully elucidated. The present study used male Wistar rats to evaluate potential somatic and behavioral effects of three different AAS; the decanoate esters of nandrolone, testosterone, and trenbolone. The rats were exposed to 15 mg/kg of nandrolone decanoate, testosterone decanoate, or trenbolone decanoate every third day for 24 days. Body weight gain and organ weights (thymus, liver, kidney, testis, and heart) were measured together with the corticosterone plasma levels. Behavioral effects were studied in the novel object recognition-test (NOR-test) and the multivariate concentric square field-test (MCSF-test). The results conclude that nandrolone decanoate, but neither testosterone decanoate nor trenbolone decanoate, caused impaired recognition memory in the NOR-test, indicating an altered cognitive function. The behavioral profile and stress hormone level of the rats were not affected by the AAS treatments. Furthermore, the study revealed diverse AAS-induced somatic effects i.e., reduced body weight development and changes in organ weights. Of the three AAS included in the study, nandrolone decanoate was identified to cause the most prominent impact on the male rat, as it affected body weight development, the weights of multiple organs, and caused an impaired memory function.


Asunto(s)
Anabolizantes , Trastornos de la Memoria , Nandrolona , Ratas Wistar , Testosterona , Animales , Masculino , Testosterona/sangre , Testosterona/análogos & derivados , Ratas , Nandrolona/análogos & derivados , Nandrolona/farmacología , Anabolizantes/efectos adversos , Anabolizantes/farmacología , Trastornos de la Memoria/inducido químicamente , Tamaño de los Órganos/efectos de los fármacos , Acetato de Trembolona/farmacología , Nandrolona Decanoato/farmacología , Peso Corporal/efectos de los fármacos , Corticosterona/sangre , Reconocimiento en Psicología/efectos de los fármacos
2.
Curr Issues Mol Biol ; 44(10): 5000-5012, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36286055

RESUMEN

Angiotensin IV (Ang IV), a metabolite of Angiotensin II, is a bioactive hexapeptide that inhibits the insulin-regulated aminopeptidase (IRAP). This transmembrane zinc metallopeptidase with many biological functions has in recent years emerged as a new pharmacological target. IRAP is expressed in a variety of tissues and can be found in high density in the hippocampus and neocortex, brain regions associated with cognition. Ang IV is known to improve memory tasks in experimental animals. One of the most potent IRAP inhibitors known today is the macrocyclic compound HA08 that is significantly more stable than the endogenous Ang IV. HA08 combines structural elements from Ang IV and the physiological substrates oxytocin and vasopressin, and binds to the catalytic site of IRAP. In the present study we evaluate whether HA08 can restore cell viability in rat primary cells submitted to hydrogen peroxide damage. After damaging the cells with hydrogen peroxide and subsequently treating them with HA08, the conceivable restoring effects of the IRAP inhibitor were assessed. The cellular viability was determined by measuring mitochondrial activity and lactate dehydrogenase (LDH) release. The mitochondrial activity was significantly higher in primary hippocampal cells, whereas the amount of LDH was unaffected. We conclude that the cell viability can be restored in this cell type by blocking IRAP with the potent macrocyclic inhibitor HA08, although the mechanism by which HA08 exerts its effects remains unclear.

3.
Bioorg Med Chem ; 29: 115859, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33309749

RESUMEN

A series of meta-substituted acetophenone derivatives, encompassing N-(alkyloxycarbonyl)thiophene sulfonamide fragments have been synthesized. Several selective AT2 receptor ligands were identified, among those a tert-butylimidazole derivative (20) with a Ki of 9.3 nM, that demonstrates a high stability in human liver microsomes (t½ = 62 min) and in human hepatocytes (t½ = 194 min). This methyloxycarbonylthiophene sulfonamide is a 20-fold more potent binder to the AT2 receptor and is considerably more stable in human liver microsomes, than a previously reported and broadly studied structurally related AT2R prototype antagonist 3 (C38). Ligand 20 acts as an AT2R agonist and caused an AT2R mediated concentration-dependent vasorelaxation of pre-contracted mouse aorta. Furthermore, in contrast to imidazole derivative C38, the tert-butylimidazole derivative 20 is a poor inhibitor of CYP3A4, CYP2D6 and CYP2C9. It is demonstrated herein that smaller alkyloxycarbonyl groups make the ligands in this series of AT2R selective compounds less prone to degradation and that a high AT2 receptor affinity can be retained after truncation of the alkyloxycarbonyl group. Binding modes of the most potent AT2R ligands were explored by docking calculations combined with molecular dynamics simulations.


Asunto(s)
Receptor de Angiotensina Tipo 2/agonistas , Médula Espinal/efectos de los fármacos , Sulfonamidas/farmacología , Tiofenos/farmacología , Vasodilatación/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hepatocitos/química , Hepatocitos/metabolismo , Ligandos , Masculino , Ratones , Ratones Endogámicos , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Estructura Molecular , Médula Espinal/patología , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Tiofenos/síntesis química , Tiofenos/química
4.
Metabolomics ; 16(1): 12, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31925559

RESUMEN

INTRODUCTION: The abuse of anabolic androgenic steroids (AASs) is a source of public concern because of their adverse effects. Supratherapeutic doses of AASs are known to be hepatotoxic and regulate the lipoproteins in plasma by modifying the metabolism of lipids in the liver, which is associated with metabolic diseases. However, the effect of AASs on the profile of lipids in plasma is unknown. OBJECTIVES: To describe the changes in the plasma lipidome exerted by AASs and to discuss these changes in the light of previous research about AASs and de novo lipogenesis in the liver. METHODS: We treated male Wistar rats with supratherapeutic doses of nandrolone decanoate and testosterone undecanoate. Subsequently, we isolated the blood plasma and performed lipidomics analysis by liquid chromatography-high resolution mass spectrometry. RESULTS: Lipid profiling revealed a decrease of sphingolipids and glycerolipids with palmitic, palmitoleic, stearic, and oleic acids. In addition, lipid profiling revealed an increase in free fatty acids and glycerophospholipids with odd-numbered chain fatty acids and/or arachidonic acid. CONCLUSION: The lipid profile presented herein reports the imprint of AASs on the plasma lipidome, which mirrors the downregulation of de novo lipogenesis in the liver. In a broader perspective, this profile will help to understand the influence of androgens on the lipid metabolism in future studies of diseases with dysregulated lipogenesis (e.g. type 2 diabetes, fatty liver disease, and hepatocellular carcinoma).


Asunto(s)
Lípidos/sangre , Lipogénesis , Hígado/efectos de los fármacos , Nandrolona Decanoato/farmacología , Congéneres de la Testosterona/farmacología , Testosterona/análogos & derivados , Animales , Hígado/metabolismo , Masculino , Ratas , Ratas Wistar , Testosterona/farmacología
5.
Int J Mol Sci ; 19(11)2018 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-30453639

RESUMEN

Evidence to date suggests that opioids such as methadone may be associated with cognitive impairment. Growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are suggested to be neuroprotective and procognitive in the brain and may therefore counteract these effects. This study aims to explore the protective and restorative effects of GH and IGF-1 in methadone-treated cell cultures. Primary cortical cell cultures were harvested from rat fetuses and grown for seven days in vitro. To examine the protective effects, methadone was co-treated with or without GH or IGF-1 for three consecutive days. To examine the restorative effects, methadone was added for the first 24 h, washed, and later treated with GH or IGF-1 for 48 h. At the end of each experiment, mitochondrial function and membrane integrity were evaluated. The results revealed that GH had protective effects in the membrane integrity assay and that both GH and IGF-1 effectively recovered mitochondrial function and membrane integrity in cells pretreated with methadone. The overall conclusion of the present study is that GH, but not IGF-1, protects primary cortical cells against methadone-induced toxicity, and that both GH and IGF-1 have a restorative effect on cells pretreated with methadone.


Asunto(s)
Hormona de Crecimiento Humana/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Metadona/toxicidad , Sustancias Protectoras/farmacología , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas Wistar , Proteínas Recombinantes/farmacología
6.
Mol Pharmacol ; 89(4): 413-24, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26769413

RESUMEN

Angiotensin IV (Ang IV) and related peptide analogs, as well as nonpeptide inhibitors of insulin-regulated aminopeptidase (IRAP), have previously been shown to enhance memory and cognition in animal models. Furthermore, the endogenous IRAP substrates oxytocin and vasopressin are known to facilitate learning and memory. In this study, the two recently synthesized 13-membered macrocyclic competitive IRAP inhibitors HA08 and HA09, which were designed to mimic the N terminus of oxytocin and vasopressin, were assessed and compared based on their ability to bind to the IRAP active site, and alter dendritic spine density in rat hippocampal primary cultures. The binding modes of the IRAP inhibitors HA08, HA09, and of Ang IV in either the extended or γ-turn conformation at the C terminus to human IRAP were predicted by docking and molecular dynamics simulations. The binding free energies calculated with the linear interaction energy method, which are in excellent agreement with experimental data and simulations, have been used to explain the differences in activities of the IRAP inhibitors, both of which are structurally very similar, but differ only with regard to one stereogenic center. In addition, we show that HA08, which is 100-fold more potent than the epimer HA09, can enhance dendritic spine number and alter morphology, a process associated with memory facilitation. Therefore, HA08, one of the most potent IRAP inhibitors known today, may serve as a suitable starting point for medicinal chemistry programs aided by MD simulations aimed at discovering more drug-like cognitive enhancers acting via augmenting synaptic plasticity.


Asunto(s)
Cistinil Aminopeptidasa/antagonistas & inhibidores , Cistinil Aminopeptidasa/metabolismo , Espinas Dendríticas/metabolismo , Disulfuros/metabolismo , Compuestos Macrocíclicos/metabolismo , Animales , Células Cultivadas , Cristalografía , Cistinil Aminopeptidasa/análisis , Espinas Dendríticas/química , Disulfuros/farmacología , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Células HEK293 , Humanos , Compuestos Macrocíclicos/farmacología , Embarazo , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley
7.
J Sex Med ; 11(12): 3064-71, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25174699

RESUMEN

INTRODUCTION: Provoked vestibulodynia (PVD) is a common type of dyspareunia among young women. The patho-physiology remains largely unclear. Women with PVD have general pain hypersensitivity and often report additional pain symptoms. Signs point towards PVD being a chronic pain disorder similar to other syndromes of longstanding pain, including a common comorbidity of anxiety and depression. Polymorphism in the serotonin receptor gene, 5HT-2A, has been associated with other chronic pain disorders such as fibromyalgia but has not been investigated in PVD patients. AIM: We aimed to investigate a possible contribution of polymorphism in the 5HT-2A gene to the etiology of PVD as well as a potential influence on pain sensitivity. METHODS: In this case-control study 98 women with PVD and 103 healthy controls between 18 and 44 years and in the same menstrual cycle phase completed questionnaires and underwent quantitative sensory testing. Venous blood samples were collected for DNA isolation. MAIN OUTCOME MEASURES: Concomitant pain was reported, a bodily pain score was created and pressure pain thresholds (PPTs) on the arm, leg, and in the vestibule were measured. Intensity of coital pain was rated on a visual analog scale, range 0-100. The T102C (rs6313) and A-1438G (rs6311) single nucleotide polymorphisms (SNPs) in the 5HT-2A gene were analyzed. RESULTS: The probability of PVD was elevated in participants carrying the 1438G- and 102C-alleles of the 5HT-2A gene (OR 2.9). The G-/C- genotypes were also associated with more concomitant bodily pain in addition to the dyspareunia, but not with experimental PPTs or coital pain ratings. PVD patients reported more concomitant bodily pain and had lower PPTs compared with controls. CONCLUSION: The results indicate a contribution of alterations in the serotonergic system to the patho-genesis of PVD and gives further evidence of PVD being a general pain disorder similar to other chronic pain disorders.


Asunto(s)
Dispareunia/genética , Polimorfismo de Nucleótido Simple/genética , Receptor de Serotonina 5-HT2A/genética , Vulvodinia/genética , Adolescente , Adulto , Ansiedad/genética , Estudios de Casos y Controles , Dolor Crónico/genética , Femenino , Humanos , Dolor/epidemiología , Dimensión del Dolor , Umbral del Dolor , Presión , Serotonina/fisiología , Encuestas y Cuestionarios , Adulto Joven
8.
Eur J Med Chem ; 265: 116122, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38199164

RESUMEN

Two series of N-(heteroaryl)thiophene sulfonamides, encompassing either a methylene imidazole group or a tert-butylimidazolylacetyl group in the meta position of the benzene ring, have been synthesized. An AT2R selective ligand with a Ki of 42 nM was identified in the first series and in the second series, six AT2R selective ligands with significantly improved binding affinities and Ki values of <5 nM were discovered. The binding modes to AT2R were explored by docking calculations combined with molecular dynamics simulations. Although some of the high affinity ligands exhibited fair stability in human liver microsomes, comparable to that observed with C21 undergoing clinical trials, most ligands displayed a very low metabolic stability with t½ of less than 10 min in human liver microsomes. The most promising ligand, with an AT2R Ki value of 4.9 nM and with intermediate stability in human hepatocytes (t½ = 77 min) caused a concentration-dependent vasorelaxation of pre-contracted mouse aorta.


Asunto(s)
Receptor de Angiotensina Tipo 2 , Sulfonamidas , Ratones , Humanos , Animales , Receptor de Angiotensina Tipo 2/metabolismo , Ligandos , Sulfonamidas/química , Tiofenos/química , Aorta/metabolismo , Angiotensina II/metabolismo
9.
Neuroendocrinology ; 97(3): 203-11, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22710737

RESUMEN

The beneficial effects of growth hormone (GH) on memory and learning have previously been confirmed in both humans and in animal models. An important role of GABAB receptors for multiple forms of learning and memory has also been reported. In this study, we examined the effect of GH on the density and functionality of the metabotropic GABAB receptors in the rat brain. Male Sprague-Dawley rats (n = 24) divided into 3 groups were injected twice daily with recombinant human GH (0.07 or 0.7 IU/kg) for 7 days. The effects of the hormone were determined by quantitative autoradiography and by GABAB stimulated [(35)S]-GTPγS binding using the selective GABAB receptor agonist baclofen. The results demonstrate moderate but significant alterations in both receptor density and functionality in a number of brain regions. For example, a dose-dependent upregulation of GABAB receptors was found in the cingulate cortex, primary motor cortex and caudate putamen, whereas attenuation in the receptor density was encountered in, for example, the medial geniculate nucleus. Although the GH-induced effects on the GABAB receptor in brain areas associated with cognition were fairly pronounced, they were significant and we propose that the physiological responses observed after GH administration at least partly can be mediated through a mechanism involving GABAB receptors.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Hormona de Crecimiento Humana/farmacología , Receptores de GABA-B/metabolismo , Animales , Baclofeno/farmacología , Relación Dosis-Respuesta a Droga , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Masculino , Ratas , Proteínas Recombinantes/farmacología , Radioisótopos de Azufre
10.
Behav Brain Res ; 455: 114678, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37739228

RESUMEN

Anxiety disorders affect up to one third of the population. Caffeine, an adenosine receptor antagonist, is thought to have a dose-dependent effect on anxiety. We recently showed that a high dose of caffeine (50 mg/kg) differentially affected anxiety-like behavior in rats with high or low baseline anxiety-like behavior, replicating findings using relatively high doses in human patient samples. It is not known if low doses of caffeine have similar effects. The elevated plus maze (EPM) was used to categorize male Wistar rats (13 weeks of age) into groups of high or low anxiety-like behavior. Behavior was evaluated using the multivariate concentric square field (MCSF) test and the EPM after a low 10 mg/kg dose of caffeine. Multivariate data analysis demonstrated that caffeine decreased the differences between the high and low anxiety group, whereas the separation remained for the high and low control groups. For the caffeine treated rats, univariate statistics showed an increase in parameters regarding activity in the EPM and duration in the slope of the MCSF. Regarding risk-taking, shelter-seeking, and exploratory behavior, caffeine did not affect the groups differently. In conclusion, these results demonstrate increased activity in the caffeine-treated rats, together with a potentially anxiolytic effect and increased impulsivity that did not differ between the baseline anxiety groups. In contrast to high caffeine doses, a low dose does not generally affect rats with high anxiety at baseline differently than rats with low anxiety-like behavior. Further studies are warranted to fully elucidate the effects of caffeine in anxiety.


Asunto(s)
Ansiolíticos , Cafeína , Humanos , Ratas , Masculino , Animales , Cafeína/farmacología , Ratas Wistar , Ansiedad/tratamiento farmacológico , Ansiolíticos/farmacología , Conducta Exploratoria , Conducta Animal , Aprendizaje por Laberinto
11.
Pharmacol Biochem Behav ; 227-228: 173573, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37302662

RESUMEN

Anxiety disorders are common psychiatric conditions with a partially elucidated neurobiology. Caffeine, an unspecific adenosine receptor antagonist, is a common psychostimulant with anxiogenic effects in sensitive individuals. High doses of caffeine produce anxiety-like behavior in rats but it is not known if this is specific for rats with high baseline anxiety-like behavior. Thus, the aim of this study was to investigate general behavior, risk-taking, and anxiety-like behavior, as well as mRNA expression (adenosine A2A and A1, dopamine D2, and, µ, κ, δ opioid, receptors, BDNF, c-fos, IGF-1) in amygdala, caudate putamen, frontal cortex, hippocampus, hypothalamus, after an acute dose of caffeine. Untreated rats were screened using the elevated plus maze (EPM), giving each rat a score on anxiety-like behavior based on their time spent in the open arms, and categorized into a high or low anxiety-like behavior group accordingly. Three weeks after categorization, the rats were treated with 50 mg/kg caffeine and their behavior profile was studied in the multivariate concentric square field (MCSF) test, and one week later in the EPM. qPCR was performed on selected genes and corticosterone plasma levels were measured using ELISA. The results demonstrated that the high anxiety-like behavior rats treated with caffeine spent less time in risk areas of the MCSF and resituated towards the sheltered areas, a behavior accompanied by lower mRNA expression of adenosine A2A receptors in caudate putamen and increased BDNF expression in hippocampus. These results support the hypothesis that caffeine affects individuals differently depending on their baseline anxiety-like behavior, possibly involving adenosine receptors. This highlights the importance of adenosine receptors as a possible drug target for anxiety disorders, although further research is needed to fully elucidate the neurobiological mechanisms of caffeine on anxiety disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cafeína , Ratas , Animales , Cafeína/farmacología , Factor Neurotrófico Derivado del Encéfalo/genética , Receptores Opioides , Adenosina/farmacología , Ansiedad/tratamiento farmacológico , Receptores Purinérgicos P1/genética , ARN Mensajero , Asunción de Riesgos
12.
Mol Pain ; 8: 68, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22971341

RESUMEN

BACKGROUND: Provoked vestibulodynia (PVD) is a pain disorder localized in the vestibular mucosa. It is the most common cause of dyspareunia among young women and it is associated with general pain hypersensitivity and other chronic pain conditions. Polymorphism in the guanosine triphosphate cyclohydrolase (GCH1) gene has been found to influence general pain sensitivity and the risk of developing a longstanding pain condition. The aim of this study was to investigate GCH1-polymorphism in women with PVD and healthy controls, in correlation to pain sensitivity. RESULTS: We found no correlation between the previously defined pain-protective GCH1-SNP combination and the diagnosis of PVD. Nor any correlation with pain sensitivity measured as pressure pain thresholds on the arm, leg and in the vestibule, coital pain scored on a visual analog scale and prevalence of other bodily pain conditions among women with PVD (n = 98) and healthy controls (n = 102). However, among patients with current treatment (n = 36), there was a significant interaction effect of GCH1-gene polymorphism and hormonal contraceptive (HC) therapy on coital pain (p = 0.04) as well as on pressure pain thresholds on the arm (p = 0.04). PVD patients carrying the specified SNP combination and using HCs had higher pain sensitivity compared to non-carriers. In non-HC-users, carriers had lower pain sensitivity. CONCLUSIONS: The results of this study gave no support to the hypothesis that polymorphism in the GCH1-gene contributes to the etiology of PVD. However, among patients currently receiving treatment an interaction effect of the defined SNP combination and use of hormonal contraceptives on pain sensitivity was found. This finding offers a possible explanation to the clinically known fact that some PVD patients improve after cessation of hormonal contraceptives, indicating that PVD patients carrying the defined SNP combination of GCH1 would benefit from this intervention.


Asunto(s)
GTP Ciclohidrolasa/genética , Predisposición Genética a la Enfermedad , Umbral del Dolor , Polimorfismo de Nucleótido Simple/genética , Vulvodinia/enzimología , Vulvodinia/genética , Adolescente , Adulto , Anticonceptivos Hormonales Orales/uso terapéutico , Femenino , Frecuencia de los Genes/genética , Heterocigoto , Humanos , Modelos Lineales , Dimensión del Dolor , Vulvodinia/tratamiento farmacológico , Vulvodinia/fisiopatología , Adulto Joven
13.
Behav Brain Res ; 432: 113971, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35738337

RESUMEN

Anabolic androgenic steroids (AAS) are frequently used to improve physical appearance and strength. AAS are known to affect muscle growth, but many AAS-users also experience psychiatric and behavioral changes after long-term use. The AAS-induced effects on the brain seem to depend on the type of steroid used, but the rationale behind the observed effect is still not clear. The present study investigated and compared the impact of nandrolone decanoate and testosterone undecanoate on body weight gain, levels of stress hormones, brain gene expression, and behavioral profiles in the male rat. The behavioral profile was determined using the multivariate concentric squared field test (MCSF-test). Blood plasma and brains were collected for further analysis using ELISA and qPCR. Nandrolone decanoate caused a reduction in body weight gain in comparison with both testosterone undecanoate and control. Rats receiving nandrolone decanoate also demonstrated decreased general activity in the MCSF. In addition, nandrolone decanoate reduced the plasma levels of ACTH in comparison with the control and increased the levels of corticosterone in comparison with testosterone undecanoate. The qPCR analysis revealed brain region-dependent changes in mRNA expression, where the hypothalamus was identified as the region most affected by the AAS. Alterations in neurotransmitter systems and stress hormones may contribute to the changes in behavior detected in the MCSF. In conclusion, both AAS affect the male rat, although, nandrolone decanoate has more pronounced impact on the physiological and the behavioral parameters measured.


Asunto(s)
Anabolizantes , Nandrolona , Anabolizantes/farmacología , Animales , Peso Corporal , Masculino , Nandrolona/farmacología , Nandrolona Decanoato , Neurotransmisores/farmacología , Ratas , Testosterona/análogos & derivados , Testosterona/farmacología
14.
Methods Mol Biol ; 2201: 109-116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32975793

RESUMEN

The opioid receptors have been an interesting target for the drug industry for decades. These receptors were pharmacologically characterized in the 1970s and several drugs and peptides have emerged over the years. In 2012, the crystal structures were also demonstrated, with new data on the receptor sites, and thus new possibilities will appear. The role of opioids in the brain has attracted considerable interest in several diseases, especially pain and drug dependence. The opioid receptors are G-protein-coupled receptors (GPCR ) that are Gi coupled which make them suitable for studying the receptor functionality. The [35S]GTP γS autoradiography assay is a good option that has the benefit of generating both anatomical and functional data in the area of interest. It is based on the first step of the signaling mechanism of GPCRs. When a ligand binds to the receptor GTP will replace GDP on the a-subunit of the G-protein, leading to a dissociation of the ßγ-subunit. These subunits will start a cascade of second messengers and subsequently a physiological response.


Asunto(s)
Autorradiografía/métodos , Guanosina 5'-O-(3-Tiotrifosfato)/química , Receptores Opioides mu/metabolismo , Analgésicos Opioides/metabolismo , Animales , Proteínas de Unión al GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Receptores Opioides/metabolismo , Transducción de Señal , Radioisótopos de Azufre/química , Radioisótopos de Azufre/metabolismo
15.
Methods Mol Biol ; 2201: 171-180, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32975798

RESUMEN

Although the number of studies that have examined the impact of opioids on cell viability is very limited, it has clearly shown that opioids commonly used in the clinic can both decrease neurogenesis and induce cell death. These negative effects induced by opioids are worrying and there is a need for further in-depth investigations addressing the impact of opioids on cell function and cell viability. A useful in vitro approach for studying the effects of opioids on cellular function and viability is using primary cortical cell cultures obtained from embryonic day 17 (E17) rat embryos. These cell cultures contain both neurons and glial cells that provide a more physiologically relevant culture condition when compared to the use of various commercially available cell lines. The primary cortical cells can be cultivated in 96-well plates, treated with various concentrations of opioids, and cell viability functions such as mitochondrial function and membrane integrity can easily be assessed using specific colorimetric assays.


Asunto(s)
Analgésicos Opioides/metabolismo , Supervivencia Celular/efectos de los fármacos , Cultivo Primario de Células/métodos , Analgésicos Opioides/farmacología , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas/metabolismo , Corteza Cerebral/citología , Embrión de Mamíferos/metabolismo , Mitocondrias/fisiología , Neuroglía/metabolismo , Neuronas/metabolismo , Ratas
16.
Brain Res Bull ; 171: 126-134, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33741459

RESUMEN

The important role of mitochondria in maintaining normal brain cell function has been demonstrated in several neurodegenerative diseases where mitochondrial dysfunction is a prominent feature. Accumulating evidence indicates that opioids may induce neuronal cell death and inhibit neurogenesis, two factors that are dependent on normal mitochondrial function. The aim of the present study was to examine the effects of morphine, methadone, and fentanyl on MitoTracker-stained mitochondria. Cells from the neuroblastoma/glioma hybrid cell-line NG108-15 were seeded on 96-well cell culture plates and treated with MitoTracker for 30 min prior to opioid treatment. Morphine, methadone, and fentanyl were added at various concentrations and images of mitochondria were acquired every 30 min for four hours using a high-content imaging device. The parameters total mitochondrial area, mitochondrial network, as well as the number and mean area of mitochondrial objects were analyzed using automated image analysis. Methadone and fentanyl, but not morphine, decreased the mitochondrial network, the number of mitochondrial objects, and increased the mean area of mitochondrial objects. Both methadone and fentanyl altered mitochondrial morphology with no effects seen from morphine treatment. These data suggest that methadone and fentanyl impact mitochondrial morphology negatively, which may be associated with neuronal cell death.


Asunto(s)
Fentanilo/farmacología , Metadona/farmacología , Mitocondrias/efectos de los fármacos , Morfina/farmacología , Narcóticos/farmacología , Animales , Línea Celular Tumoral , Ratones , Ratas , Imagen de Lapso de Tiempo
17.
J Steroid Biochem Mol Biol ; 210: 105863, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33677017

RESUMEN

The illicit use of anabolic androgenic steroids (AAS) among adolescents and young adults is a major concern due to the unknown and unpredictable impact of AAS on the developing brain and the consequences of this on mental health, cognitive function and behaviour. The present study aimed to investigate the effects of supra-physiological doses of four structurally different AAS (testosterone, nandrolone, stanozolol and trenbolone) on neurite development and cell viability using an in vitro model of immature primary rat cortical cell cultures. A high-throughput screening image-based approach, measuring the neurite length and number of neurons, was used for the analysis of neurite outgrowth. In addition, cell viability and expression of the Tubb3 gene (encoding the protein beta-III tubulin) were investigated. Testosterone, nandrolone, and trenbolone elicited adverse effects on neurite outgrowth as deduced from an observed reduced neurite length per neuron. Trenbolone was the only AAS that reduced the cell viability as indicated by a decreased number of neurons and declined mitochondrial function. Moreover, trenbolone downregulated the Tubb3 mRNA expression. The adverse impact on neurite development was neither inhibited nor supressed by the selective androgen receptor (AR) antagonist, flutamide, suggesting that the observed effects result from another mechanism or mechanisms of action that are operating apart from AR activation. The results demonstrate a possible AAS-induced detrimental effect on neuronal development and regenerative functions. An impact on these events, that are essential mechanisms for maintaining normal brain function, could possibly contribute to behavioural alterations seen in AAS users.


Asunto(s)
Anabolizantes/química , Anabolizantes/farmacología , Corteza Cerebral/citología , Proyección Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Corteza Cerebral/embriología , Relación Dosis-Respuesta a Droga , Femenino , Nandrolona/química , Nandrolona/farmacología , Neuronas/metabolismo , Cultivo Primario de Células , Ratas Wistar , Receptores Androgénicos/metabolismo , Estanozolol/química , Estanozolol/farmacología , Testosterona/química , Testosterona/farmacología , Acetato de Trembolona/química , Acetato de Trembolona/farmacología , Tubulina (Proteína)/genética
18.
Mol Pain ; 6: 41, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20633294

RESUMEN

BACKGROUND: The aim of this study was to investigate if there is an association between different SNP combinations in the guanosine triphosphate cyclohydrolase (GCH1) gene and a number of pain behavior related outcomes during labor. A population-based sample of pregnant women (n = 814) was recruited at gestational week 18. A plasma sample was collected from each subject. Genotyping was performed and three single nucleotide polymorphisms (SNP) previously defined as a pain-protective SNP combination of GCH1 were used. RESULTS: Homozygous carriers of the pain-protective SNP combination of GCH1 arrived to the delivery ward with a more advanced stage of cervical dilation compared to heterozygous carriers and non-carriers. However, homozygous carriers more often used second line labor analgesia compared to the others. CONCLUSION: The pain-protective SNP combination of GCH1 may be of importance in the limited number of homozygous carriers during the initial dilation of cervix but upon arrival at the delivery unit these women are more inclined to use second line labor analgesia.


Asunto(s)
Analgesia Obstétrica , GTP Ciclohidrolasa/genética , Dolor de Parto/genética , Trabajo de Parto , Adulto , Femenino , Humanos , Primer Periodo del Trabajo de Parto , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Embarazo
19.
Eur J Pharmacol ; 885: 173531, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32871173

RESUMEN

Affecting over 320 million people around the world, depression has become a formidable challenge for modern medicine. In addition, an increasing number of studies cast doubt on the monoamine theory of depressive disorder and, worryingly, antidepressant medications only significantly benefit patients with severe depression. Thus, it is not surprising that researchers have shown an increased interest in new theories attempting to explain the pathogenesis of this disease. One example is the excitatory/inhibitory transmission imbalance theory. These abnormalities involve glutamate and γ-aminobutyric acid (GABA) signaling. Studies on GABAB receptors and their antagonists are particularly promising for the treatment of depressive disorders. In this paper, intracellular pathways controlled by GABAB receptors and their links to depression are described, including the impact of ketamine on GABAergic synaptic transmission.


Asunto(s)
Antidepresivos/farmacología , Trastorno Depresivo/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/fisiología , Receptores de GABA-B/efectos de los fármacos , Receptores de GABA-B/fisiología , Transducción de Señal/efectos de los fármacos , Animales , Humanos , Péptidos y Proteínas de Señalización Intracelular/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología
20.
Growth Horm IGF Res ; 50: 42-47, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31862540

RESUMEN

OBJECTIVE: Growth hormone (GH) is widely known for its peripheral effects during growth and development. However, numerous reports also suggest that GH exert pro-cognitive, restorative, and protective properties in the brain. In in vitro studies, the detection of dendritic spines, small protrusions extending from axons, can act as a marker for cognition-related function as spine formation is considered to be associated with learning and memory. Here we show that an acute 24-hour treatment of GH can increase dendritic spine density in primary hippocampal cell cultures. DESIGN: Primary hippocampal cells were harvested from embryonic Wistar rats and cultured for 14 days. Cells were treated with supra-physiological doses of GH (10-1000 nM) and subjected to a high-throughput screening protocol. Images were acquired and analyzed using automated image analysis and the number of spines, spines per neurite length, neurite length, and mean area of spines, was reported. RESULTS: GH treatment (1000 nM) increased the number of dendritic spines by 83% and spines per neurite length by 82% when compared to control. For comparison BDNF, a known inducer of spine densities, produced statistically non-significant increase in this setting. CONCLUSION: The results was found significant using the highest supra-physiological dose of GH, and the present study further confirms a potential role of the hormone in the treatment of cognitive dysfunction.


Asunto(s)
Espinas Dendríticas/efectos de los fármacos , Hormona del Crecimiento/farmacología , Hipocampo/citología , Neuritas/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Ensayos Analíticos de Alto Rendimiento , Técnicas In Vitro , Cultivo Primario de Células , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA