Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Rev Mol Cell Biol ; 12(5): 295-307, 2011 05.
Artículo en Inglés | MEDLINE | ID: mdl-21448225

RESUMEN

In the past decade, the diversity of signals generated by the ubiquitin system has emerged as a dominant regulator of biological processes and propagation of information in the eukaryotic cell. A wealth of information has been gained about the crucial role of spatial and temporal regulation of ubiquitin species of different lengths and linkages in the nuclear factor-κB (NF-κB) pathway, endocytic trafficking, protein degradation and DNA repair. This spatiotemporal regulation is achieved through sophisticated mechanisms of compartmentalization and sequential series of ubiquitylation events and signal decoding, which control diverse biological processes not only in the cell but also during the development of tissues and entire organisms.


Asunto(s)
Fenómenos Fisiológicos Celulares/fisiología , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Ubiquitina/metabolismo , Animales , Humanos , Modelos Biológicos , Ubiquitinación
2.
Retrovirology ; 15(1): 33, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29665857

RESUMEN

BACKGROUND: Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy secondary to chronic human T-cell lymphotropic virus 1 infection, triggered by the virally encoded oncoprotein Tax. The transforming activity and subcellular localization of Tax is strongly influenced by posttranslational modifications, among which ubiquitylation and SUMOylation have been identified as key regulators of the nuclear/cytoplasmic shuttling of Tax, as well as its ability to activate NF-κB signaling. RESULTS: Adding to the complex posttranslational modification landscape of Tax, we here demonstrate that Tax also interacts with the ubiquitin-related modifier 1 (Urm1). Conjugation of Urm1 to Tax results in a redistribution of Tax to the cytoplasm and major increase in the transcription of the NF-ĸB targets Rantes and interleukin-6. Utilizing a tax-transgenic Drosophila model, we show that the Urm1-dependent subcellular targeting of Tax is evolutionary conserved, and that the presence of Urm1 is strongly correlated with the transcriptional output of Diptericin, an antimicrobial peptide and established downstream target of NF-κB in flies. CONCLUSIONS: These data put forward Urm1 as a novel Tax modifier that modulates its oncogenic activity and hence represents a potential novel target for developing new strategies for treating ATL.


Asunto(s)
Productos del Gen tax/metabolismo , Infecciones por HTLV-I/metabolismo , Infecciones por HTLV-I/virología , Interacciones Huésped-Patógeno , Virus Linfotrópico T Tipo 1 Humano/fisiología , Ubiquitinas/metabolismo , Animales , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Quinasa I-kappa B/metabolismo , Leucemia-Linfoma de Células T del Adulto/etiología , Leucemia-Linfoma de Células T del Adulto/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Sumoilación , Activación Transcripcional
3.
Nature ; 471(7340): 637-41, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21455181

RESUMEN

SHARPIN is a ubiquitin-binding and ubiquitin-like-domain-containing protein which, when mutated in mice, results in immune system disorders and multi-organ inflammation. Here we report that SHARPIN functions as a novel component of the linear ubiquitin chain assembly complex (LUBAC) and that the absence of SHARPIN causes dysregulation of NF-κB and apoptotic signalling pathways, explaining the severe phenotypes displayed by chronic proliferative dermatitis (cpdm) in SHARPIN-deficient mice. Upon binding to the LUBAC subunit HOIP (also known as RNF31), SHARPIN stimulates the formation of linear ubiquitin chains in vitro and in vivo. Coexpression of SHARPIN and HOIP promotes linear ubiquitination of NEMO (also known as IKBKG), an adaptor of the IκB kinases (IKKs) and subsequent activation of NF-κB signalling, whereas SHARPIN deficiency in mice causes an impaired activation of the IKK complex and NF-κB in B cells, macrophages and mouse embryonic fibroblasts (MEFs). This effect is further enhanced upon concurrent downregulation of HOIL-1L (also known as RBCK1), another HOIP-binding component of LUBAC. In addition, SHARPIN deficiency leads to rapid cell death upon tumour-necrosis factor α (TNF-α) stimulation via FADD- and caspase-8-dependent pathways. SHARPIN thus activates NF-κB and inhibits apoptosis via distinct pathways in vivo.


Asunto(s)
Apoptosis , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Linfocitos B/metabolismo , Proteínas Portadoras/metabolismo , Caspasa 8/metabolismo , Células Cultivadas , Dermatitis/genética , Dermatitis/metabolismo , Dermatitis/patología , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Quinasa I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/metabolismo , Ratones , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
J Virol ; 89(15): 8092-5, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25995252

RESUMEN

Human T-cell lymphotropic virus type 1 (HTLV-1)-induced adult T-cell leukemia/lymphoma is an aggressive malignancy. HTLV-2 is genetically related to HTLV-1 but does not cause any malignant disease. HTLV-1 Tax transactivator (Tax-1) contributes to leukemogenesis via NF-κB. We describe transgenic Drosophila models expressing Tax in the compound eye and plasmatocytes. We demonstrate that Tax-1 but not Tax-2 induces ommatidial perturbation and increased plasmatocyte proliferation and that the eye phenotype is dependent on Kenny (IKKγ/NEMO), thus validating this new in vivo model.


Asunto(s)
Transformación Celular Viral , Drosophila melanogaster/virología , Productos del Gen tax/metabolismo , Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/fisiología , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ojo/patología , Ojo/virología , Productos del Gen tax/genética , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 2 Humano/genética , Virus Linfotrópico T Tipo 2 Humano/metabolismo , Humanos
5.
EMBO J ; 29(14): 2421-32, 2010 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-20551902

RESUMEN

Despite extensive investigations of Cbl-interacting protein of 85 kDa (CIN85) in receptor trafficking and cytoskeletal dynamics, little is known about its functions in vivo. Here, we report the study of a mouse deficient of the two CIN85 isoforms expressed in the central nervous system, exposing a function of CIN85 in dopamine receptor endocytosis. Mice lacking CIN85 exon 2 (CIN85(Deltaex2)) show hyperactivity phenotypes, characterized by increased physical activity and exploratory behaviour. Interestingly, CIN85(Deltaex2) animals display abnormally high levels of dopamine and D2 dopamine receptors (D2DRs) in the striatum, an important centre for the coordination of animal behaviour. Importantly, CIN85 localizes to the post-synaptic compartment of striatal neurons in which it co-clusters with D2DRs. Moreover, it interacts with endocytic regulators such as dynamin and endophilins in the striatum. Absence of striatal CIN85 causes insufficient complex formation of endophilins with D2DRs in the striatum and ultimately decreased D2DR endocytosis in striatal neurons in response to dopamine stimulation. These findings indicate an important function of CIN85 in the regulation of dopamine receptor functions and provide a molecular explanation for the hyperactive behaviour of CIN85(Deltaex2) mice.


Asunto(s)
Conducta Animal/fisiología , Endocitosis/fisiología , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Isoformas de Proteínas/metabolismo , Receptores de Dopamina D2/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Agonistas de Dopamina/metabolismo , Antagonistas de Dopamina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , Isoformas de Proteínas/genética , Receptores de Dopamina D2/genética
6.
Nature ; 425(6957): 512-6, 2003 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-14523447

RESUMEN

The Drosophila melanogaster gene Anaplastic lymphoma kinase (Alk) is homologous to mammalian Alk, a member of the Alk/Ltk family of receptor tyrosine kinases (RTKs). We have previously shown that the Drosophila Alk RTK is crucial for visceral mesoderm development during early embryogenesis. Notably, observed Alk visceral mesoderm defects are highly reminiscent of the phenotype reported for the secreted molecule Jelly belly (Jeb). Here we show that Drosophila Alk is the receptor for Jeb in the developing visceral mesoderm, and that Jeb binding stimulates an Alk-driven, extracellular signal-regulated kinase-mediated signalling pathway, which results in the expression of the downstream gene duf (also known as kirre)--needed for muscle fusion. This new signal transduction pathway drives specification of the muscle founder cells, and the regulation of Duf expression by the Drosophila Alk RTK explains the visceral-mesoderm-specific muscle fusion defects observed in both Alk and jeb mutant animals.


Asunto(s)
Fusión Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana , Proteínas Musculares , Músculos/citología , Músculos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Quinasa de Linfoma Anaplásico , Animales , Diferenciación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Activación Enzimática , Mesodermo/citología , Mesodermo/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Músculos/embriología , Mutación/genética , Fenotipo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas Receptoras , Células Madre/citología , Células Madre/metabolismo
7.
Biochem J ; 420(3): 345-61, 2009 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-19459784

RESUMEN

RTKs (receptor tyrosine kinases) play important roles in cellular proliferation and differentiation. In addition, RTKs reveal oncogenic potential when their kinase activities are constitutively enhanced by point mutation, amplification or rearrangement of the corresponding genes. The ALK (anaplastic lymphoma kinase) RTK was originally identified as a member of the insulin receptor subfamily of RTKs that acquires transforming capability when truncated and fused to NPM (nucleophosmin) in the t(2;5) chromosomal rearrangement associated with ALCL (anaplastic large cell lymphoma). To date, many chromosomal rearrangements leading to enhanced ALK activity have been described and are implicated in a number of cancer types. Recent reports of the EML4 (echinoderm microtubule-associated protein like 4)-ALK oncoprotein in NSCLC (non-small cell lung cancer), together with the identification of activating point mutations in neuroblastoma, have highlighted ALK as a significant player and target for drug development in cancer. In the present review we address the role of ALK in development and disease and discuss implications for the future.


Asunto(s)
Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Quinasa de Linfoma Anaplásico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patología , Modelos Biológicos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas Receptoras
8.
Eur J Neurosci ; 27(11): 2860-70, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18540882

RESUMEN

The role of the conserved focal adhesion kinase (FAK) family of protein tyrosine kinases in the development and physiological functions of the CNS has long been an area of interest among neuroscientists. In this report, we observe that Drosophila mutants lacking Fak56 exhibit a decreased lifespan, accompanied by a bang-sensitive phenotype, which is characterized by sensitivity to mechanical and high-frequency electrical stimulation. Fak56 mutant animals display lower thresholds and higher rates of seizures in response to electroconvulsive stimuli. Direct measurements of action potential conduction in larval segmental nerves demonstrate a slowed propagation speed and failure during high-frequency nerve stimulation. In addition, neuromuscular junctions in Fak56 mutant animals display transmission blockade during high-frequency activity as a result of action potential failure. Endogenous Fak56 protein is abundant in glial cells ensheathing the axon bundles, and structural alterations of segmental nerve bundles can be observed in mutants. Manipulation of Fak56 function specifically in glial cells also disrupts action potential conduction and neurotransmission, suggesting a glial component in the Fak56 bang-sensitive phenotype. Furthermore, we show that increased intracellular calcium levels result in the dephosphorylation of endogenous Fak56 protein in Drosophila cell lines, in parallel with our observations of highly variable synaptic potentials at a higher Ca2+ level in Fak56 mutant larvae. Together these findings suggest that modulation of Fak56 function is important for action potential propagation and Ca2+-regulated neuromuscular transmission in vivo.


Asunto(s)
Proteínas de Drosophila/genética , Quinasa 1 de Adhesión Focal/genética , Reacción Cataléptica de Congelación/fisiología , Sistema Nervioso/enzimología , Sistema Nervioso/crecimiento & desarrollo , Enfermedades de la Unión Neuromuscular/enzimología , Transmisión Sináptica/genética , Potenciales de Acción/genética , Animales , Axones/enzimología , Axones/ultraestructura , Señalización del Calcio/genética , Células Cultivadas , Drosophila melanogaster , Estimulación Eléctrica , Femenino , Predisposición Genética a la Enfermedad/genética , Longevidad/genética , Masculino , Mutación/genética , Conducción Nerviosa/genética , Neuroglía/enzimología , Neuroglía/ultraestructura , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiopatología , Enfermedades de la Unión Neuromuscular/genética , Enfermedades de la Unión Neuromuscular/fisiopatología , Convulsiones/genética , Convulsiones/metabolismo , Convulsiones/fisiopatología , Estrés Mecánico
9.
PLoS One ; 12(9): e0185611, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28953965

RESUMEN

By covalently conjugating to target proteins, ubiquitin-like modifiers (UBLs) act as important regulators of target protein localization and activity, thereby playing a critical role in the orchestration of cellular biology. The most ancient and one of the least studied UBLs is Urm1, a dual-function protein that in parallel to performing similar functions as its prokaryotic ancestors in tRNA modification, also has adopted the capacity to conjugate to cellular proteins analogous to ubiquitin and other UBL modifiers. In order to increase the understanding of Urm1 and its role in multicellular organisms, we have used affinity purification followed by mass spectrometry to identify putative targets of Urm1 conjugation (urmylation) at three developmental stages of the Drosophila melanogaster lifecycle. Altogether we have recovered 79 Urm1-interacting proteins in Drosophila, which include the already established Urm1 binding partners Prx5 and Uba4, together with 77 candidate urmylation targets that are completely novel in the fly. Among these, the majority was exclusively identified during either embryogenesis, larval stages or in adult flies. We further present biochemical evidence that four of these proteins are covalently conjugated by Urm1, whereas the fifth verified Urm1-binding protein appears to interact with Urm1 via non-covalent means. Besides recapitulating the previously established roles of Urm1 in tRNA modification and during oxidative stress, functional clustering of the newly identified Urm1-associated proteins further positions Urm1 in protein networks that control other types of cellular stress, such as immunological threats and DNA damage. In addition, the functional characteristics of several of the candidate targets strongly match the phenotypes displayed by Urm1n123 null animals, including embryonic lethality, reduced fertility and shortened lifespan. In conclusion, this identification of candidate targets of urmylation significantly increases the knowledge of Urm1 and presents an excellent starting point for unravelling the role of Urm1 in the context of a complex living organism.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteómica , Ubiquitina/metabolismo , Animales , Cromatografía de Afinidad , Proteínas de Drosophila/aislamiento & purificación , Espectrometría de Masas
11.
Curr Biol ; 20(10): 944-50, 2010 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-20451383

RESUMEN

Cytokinesis, the final step of cell division, conventionally proceeds to cell separation by abscission, or complete cytokinesis, but may in certain tissues be incomplete, yielding daughter cells that are interconnected in syncytia by stable intercellular bridges. The mechanisms that determine complete versus incomplete cytokinesis are not known. Here we report a novel in vivo role of the Drosophila CD2AP/CIN85 ortholog Cindr in both complete and incomplete cytokinesis. We also show evidence for the presence of persistent intercellular bridges in the major larval imaginal disc epithelia. During conventional division of both cultured and embryonic cells, Cindr localizes to cleavage furrows, intercellular bridges, and midbodies. Moreover, in cells undergoing incomplete cytokinesis in the female germline and the somatic ovarian follicle cell and larval imaginal disc epithelia, Cindr localizes to arrested cleavage furrows and stable intercellular bridges, respectively. In these structures, Cindr colocalizes with the essential cytokinesis regulator Anillin. We show that Cindr interacts with Anillin and that depletion of either Cindr or Anillin gives rise to binucleate cells and fewer intercellular bridges in vivo. We propose that Cindr and Anillin cooperate to promote intercellular bridge stability during incomplete cytokinesis in Drosophila melanogaster.


Asunto(s)
Proteínas Contráctiles/metabolismo , Citocinesis/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Proteínas de Microfilamentos/metabolismo , Animales , Proteínas Contráctiles/genética , Proteínas de Drosophila/genética , Femenino , Humanos , Proteínas de Microfilamentos/genética , Oogénesis
12.
PLoS One ; 5(3): e9403, 2010 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-20209136

RESUMEN

C3G is a guanine nucleotide exchange factor (GEF) and modulator of small G-protein activity, which primarily acts on members of the Rap GTPase subfamily. Via promotion of the active GTP bound conformation of target GTPases, C3G has been implicated in the regulation of multiple cellular and developmental events including proliferation, differentiation and apoptosis. The Drosophila C3G orthologue exhibits a domain organization similar to that of vertebrate C3G. Through deletion of the C3G locus, we have observed that loss of C3G causes semi-lethality, and that escaping adult flies are characterized by a reduction in lifespan and general fitness. In situ hybridization reveals C3G expression in the developing embryonic somatic and visceral muscles, and indeed analysis of C3G mutants suggests essential functions of C3G for normal body wall muscle development during larval stages. C3G mutants display abnormal muscle morphology and attachment, as well as failure to properly localize betaPS integrins to muscle attachment sites. Moreover, we show that C3G stimulates guanine nucleotide exchange on Drosophila Rap GTPases in vitro. Taken together, we conclude that Drosophila C3G is a Rap1-specific GEF with important functions in maintaining muscle integrity during larval stages.


Asunto(s)
Proteínas de Drosophila/fisiología , Larva/fisiología , Músculos/embriología , Proteínas de Unión al GTP rap1/fisiología , Animales , Apoptosis , Drosophila melanogaster , Eliminación de Gen , Integrinas/metabolismo , Ratones , Microscopía Confocal/métodos , Modelos Genéticos , Mutación , Proteínas Recombinantes/química , Factores de Tiempo , Proteínas de Unión al GTP rap1/metabolismo
13.
Mech Dev ; 126(8-9): 721-36, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19463947

RESUMEN

In this study we describe the morphological and genetic analysis of the Drosophila mutant gürtelchen (gurt). gurt was identified by screening an EMS collection for novel mutations affecting visceral mesoderm development and was named after the distinct belt shaped visceral phenotype. Interestingly, determination of visceral cell identities and subsequent visceral myoblast fusion is not affected in mutant embryos indicating a later defect in visceral development. gurt is in fact a new huckebein (hkb) allele and as such exhibits nearly complete loss of endodermal derived structures. Targeted ablation of the endodermal primordia produces a phenotype that resembles the visceral defects observed in huckebein(gürtelchen) (hkb(gurt)) mutant embryos. It was shown previously that visceral mesoderm development requires complex interactions between visceral myoblasts and adjacent tissues. Signals from the neighbouring somatic myoblasts play an important role in cell type determination and are a prerequisite for visceral muscle fusion. Furthermore, the visceral mesoderm is known to influence endodermal migration and midgut epithelium formation. Our analyses of the visceral phenotype of hkb(gurt) mutant embryos reveal that the adjacent endoderm plays a critical role in the later stages of visceral muscle development, and is required for visceral muscle elongation and outgrowth after proper myoblast fusion.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Endodermo/metabolismo , Mesodermo/metabolismo , Músculos/embriología , Músculos/metabolismo , Animales , Diferenciación Celular , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Microscopía Fluorescente/métodos , Modelos Biológicos , Modelos Genéticos , Mutación , Mioblastos/citología , Fenotipo
14.
Neural Dev ; 3: 26, 2008 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-18925939

RESUMEN

BACKGROUND: Focal adhesion kinase (FAK) functions in cell migration and signaling through activation of the mitogen-activated protein kinase (MAPK) signaling cascade. Neuronal function of FAK has been suggested to control axonal branching; however, the underlying mechanism in this process is not clear. RESULTS: We have generated mutants for the Drosophila FAK gene, Fak56. Null Fak56 mutants display overgrowth of larval neuromuscular junctions (NMJs). Localization of phospho-FAK and rescue experiments suggest that Fak56 is required in presynapses to restrict NMJ growth. Genetic analyses imply that FAK mediates the signaling pathway of the integrin alphaPS3betanu heterodimer and functions redundantly with Src. At NMJs, Fak56 downregulates ERK activity, as shown by diphospho-ERK accumulation in Fak56 mutants, and suppression of Fak56 mutant NMJ phenotypes by reducing ERK activity. CONCLUSION: We conclude that Fak56 is required to restrict NMJ growth during NMJ development. Fak56 mediates an extracellular signal through the integrin receptor. Unlike its conventional role in activating MAPK/ERK, Fak56 suppresses ERK activation in this process. These results suggest that Fak56 mediates a specific neuronal signaling pathway distinct from that in other cellular processes.


Asunto(s)
Proteínas de Drosophila/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Cadenas beta de Integrinas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Animales , Regulación hacia Abajo , Drosophila , Proteínas de Drosophila/genética , Electrofisiología , Quinasa 1 de Adhesión Focal/genética , Inmunohistoquímica , Cadenas beta de Integrinas/genética , Microscopía Confocal , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiología , Fosforilación , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Potenciales Sinápticos/fisiología
15.
Differentiation ; 75(5): 418-26, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17286600

RESUMEN

The Drosophila melanogaster gene Anaplastic Lymphoma Kinase (Alk) regulates a signal transduction pathway required for founder cell specification within the visceral muscle of the developing embryonic midgut. During embryonic development, the midgut visceral muscle is lined by the endodermal cell layer. In this paper, we have investigated signalling between these two tissues. Here, we show that Alk function is required for decapentaplegic (Dpp) expression and subsequent signalling via the Mad pathway in the developing gut. We propose that not only does Alk signalling regulate founder cell specification and thus fusion in the developing visceral muscle, but that Alk also regulates Dpp signalling between the visceral muscle and the endoderm. This provides an elegant mechanism with which to temporally coordinate visceral muscle fusion and later events in midgut development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Intestinos/embriología , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Quinasa de Linfoma Anaplásico , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/enzimología , Endodermo/citología , Endodermo/metabolismo , Femenino , Mucosa Intestinal/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas Receptoras
16.
Dev Genes Evol ; 216(1): 10-8, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16220264

RESUMEN

Midkine (MK) and Pleiotrophin (PTN) are small heparin-binding cytokines with closely related structures. To date, this family of proteins has been implicated in multiple processes, such as growth, survival, and migration of various cells, and has roles in neurogenesis and epithelial-mesenchymal interaction during organogenesis. In this report, we have characterized two members of the MK/PTN family of proteins in Drosophila, named Miple1 and Miple2, from Midkine and Pleiotrophin. Drosophila miple1 and miple2 encode secreted proteins which are expressed in spatially restricted, nonoverlapping patterns during embryogenesis. Expression of miple1 can be found at high levels in the central nervous system, while miple2 is strongly expressed in the developing midgut endoderm. The identification of homologues of the MK/PTN family in this genetically tractable model organism should allow an analysis of their function during complex developmental processes.


Asunto(s)
Proteínas Portadoras/genética , Citocinas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Familia de Multigenes , Secuencia de Aminoácidos , Animales , Células COS , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Células Cultivadas , Chlorocebus aethiops , Citocinas/química , Citocinas/metabolismo , Proteínas de Drosophila/química , Humanos , Midkina , Datos de Secuencia Molecular
17.
Development ; 131(23): 5795-805, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15525665

RESUMEN

The mammalian focal adhesion kinase (FAK) family of non-receptor protein-tyrosine kinases has been implicated in controlling a multitude of cellular responses to the engagement of cell-surface integrins and G-protein-coupled receptors. The high level of sequence conservation between the mammalian proteins and the Drosophila homologue of FAK, Fak56, suggested that it would have similar functions. However, we show here that Drosophila Fak56 is not essential for integrin functions in adhesion, migration or signaling in vivo. Furthermore, animals lacking Fak56 are viable and fertile, demonstrating that Fak56 is not essential for other developmental or physiological functions. Despite this, overexpressed Fak56 is a potent inhibitor of integrins binding to the extracellular matrix, suggesting that Fak56 may play a subtle role in the negative regulation of integrin adhesion.


Asunto(s)
Regulación de la Expresión Génica , Integrinas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/fisiología , Animales , Southern Blotting , Western Blotting , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , ADN/metabolismo , Regulación hacia Abajo , Drosophila , Proteínas de Drosophila , Drosophila melanogaster , Quinasa 1 de Adhesión Focal , Proteína-Tirosina Quinasas de Adhesión Focal , Eliminación de Gen , Immunoblotting , Modelos Genéticos , Músculos/embriología , Mutación , Fenotipo , Fosforilación , Estructura Terciaria de Proteína , Transducción de Señal , Transgenes , Tirosina/metabolismo
18.
EMBO Rep ; 4(8): 781-6, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12855999

RESUMEN

The Drosophila melanogaster gene Anaplastic lymphoma kinase (Alk) is homologous to mammalian Alk, which encodes a member of the Alk/Ltk family of receptor tyrosine kinases (RTKs). In humans, the t(2;5) translocation, which involves the ALK locus, produces an active form of ALK, which is the causative agent in non-Hodgkin's lymphoma. The physiological function of the Alk RTK, however, is unknown. In this paper, we describe loss-of-function mutants in the Drosophila Alk gene that cause a complete failure of the development of the gut. We propose that the main function of Drosophila Alk during early embryogenesis is in visceral mesoderm development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Quinasa de Linfoma Anaplásico , Animales , Secuencia de Bases , Clonación Molecular , Sistema Digestivo/embriología , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Mesodermo/citología , Mesodermo/metabolismo , Mutación Puntual , Proteínas Tirosina Quinasas Receptoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA