Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 310(10): R943-51, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27009051

RESUMEN

Intermittent claudication (IC) is the most commonly reported symptom of peripheral arterial disease (PAD). Impaired limb blood flow is a major casual factor of lower exercise tolerance in PAD but cannot entirely explain it. We hypothesized that IC is associated with structural changes of the capillary-mitochondria interface that could contribute to the reduction of exercise tolerance in IC patients. Capillary and mitochondrial morphometry were performed after light and transmission electron microscopy using vastus lateralis muscle biopsies of 14 IC patients and 10 age-matched controls, and peak power output (PPO) was determined for all participants using an incremental single-leg knee-extension protocol. Capillary density was lower (411 ± 90 mm(-2) vs. 506 ± 95 mm(-2); P ≤ 0.05) in the biopsies of the IC patients than in those of the controls. The basement membrane (BM) around capillaries was thicker (543 ± 82 nm vs. 423 ± 97 nm; P ≤ 0.01) and the volume density of mitochondria was lower (3.51 ± 0.56% vs. 4.60 ± 0.74%; P ≤ 0.01) in the IC patients than the controls. In the IC patients, a higher proportion of capillaries appeared with collapsed slit-like lumen and/or swollen endothelium. PPO was lower (18.5 ± 9.9 W vs. 33.5 ± 9.4 W; P ≤ 0.01) in the IC patients than the controls. We suggest that several structural alterations in skeletal muscle, either collectively or separately, contribute to the reduction of exercise tolerance in IC patients.


Asunto(s)
Capilares/fisiología , Claudicación Intermitente/patología , Mitocondrias Musculares/fisiología , Músculo Esquelético/irrigación sanguínea , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Consumo de Oxígeno/fisiología
2.
Hepatology ; 57(5): 2037-48, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22961760

RESUMEN

UNLABELLED: The histidine triad nucleotide-binding (HINT2) protein is a mitochondrial adenosine phosphoramidase expressed in the liver and pancreas. Its physiological function is unknown. To elucidate the role of HINT2 in liver physiology, the mouse Hint2 gene was deleted. Hint2(-/-) and Hint2(+/+) mice were generated in a mixed C57Bl6/J × 129Sv background. At 20 weeks, the phenotypic changes in Hint2(-/-) relative to Hint2(+/+) mice were an accumulation of hepatic triglycerides, decreased tolerance to glucose, a defective counter-regulatory response to insulin-provoked hypoglycemia, and an increase in plasma interprandial insulin but a decrease in glucose-stimulated insulin secretion and defective thermoregulation upon fasting. Leptin messenger RNA (mRNA) in adipose tissue and plasma leptin were elevated. In mitochondria from Hint2(-/-) hepatocytes, state 3 respiration was decreased, a finding confirmed in HepG2 cells where HINT2 mRNA was silenced. The linked complex II-III electron transfer was decreased in Hint2(-/-) mitochondria, which was accompanied by a lower content of coenzyme Q. Hypoxia-inducible factor-2α expression and the generation of reactive oxygen species were increased. Electron microscopy of mitochondria in Hint2(-/-) mice aged 12 months revealed clustered, fused organelles. The hepatic activities of 3-hydroxyacyl-coenzyme A dehydrogenase short chain and glutamate dehydrogenase (GDH) were decreased by 68% and 60%, respectively, without a change in protein expression. GDH activity was similarly decreased in HINT2-silenced HepG2 cells. When measured in the presence of purified sirtuin 3, latent GDH activity was recovered (126% in Hint2(-/-) versus 83% in Hint2(+/+) ). This suggests a greater extent of acetylation in Hint2(-/-) than in Hint2(+/+) . CONCLUSION: Hint2/HINT2 positively regulates mitochondrial lipid metabolism and respiration and glucose homeostasis. The absence of Hint2 provokes mitochondrial deformities and a change in the pattern of acetylation of selected proteins.


Asunto(s)
Glucemia/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Glutamato Deshidrogenasa/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Hidrolasas/deficiencia , Hidrolasas/genética , Hidrolasas/fisiología , Metabolismo de los Lípidos/fisiología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Modelos Animales , Especies Reactivas de Oxígeno/metabolismo
3.
Eur J Appl Physiol ; 113(7): 1719-29, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23397151

RESUMEN

The presence of a silencing sequence (the I-allele) in the gene for the upstream regulator of blood flow, angiotensin I-converting enzyme (ACE), is associated with superior endurance performance and its trainability. We tested in a retrospective study with 36 Caucasian men of Swiss descent whether carriers of the ACE I-allele demonstrate a modified adaptive response of energy supply lines in knee extensor muscle, and aerobic fitness, to endurance training based on 6 weeks of supervised bicycle exercise or 6 months of self-regulated running (p value

Asunto(s)
Umbral Anaerobio/genética , Ejercicio Físico , Mutación INDEL , Músculo Esquelético/metabolismo , Peptidil-Dipeptidasa A/genética , Polimorfismo Genético , Adulto , Estudios de Casos y Controles , Perfilación de la Expresión Génica , Humanos , Masculino , Microcirculación , Mitocondrias Musculares/metabolismo , Tamaño Mitocondrial , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/citología , ARN Mensajero/metabolismo , Transcripción Genética , Regulación hacia Arriba
4.
Mol Syndromol ; 14(4): 347-361, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37766831

RESUMEN

Introduction: The p.(Arg85Trp) variant-specific phenotype of hepatocyte nuclear factor 4 alpha shows a complex clinical picture affecting three different organ systems and their corresponding metabolisms. Little is known about the molecular mechanisms involved and their relationship with the diverse symptoms seen in the context of this specific variant. Here, we present data of a new patient that expand the clinical phenotype, suggesting possible disease mechanisms. Case Presentation: Clinical data were extracted from the patient's charts. The liver, kidney, and muscle were analyzed with routine histology and electron microscopy. Mitochondrial function was assessed by respirometric analyses and enzymatic activity assays. Structure and sequence analyses of this specific variant were investigated by in silico analyses. Our patient showed the known features of the variant-specific phenotype, including macrosomia, congenital hyperinsulinism, transient hepatomegaly, and renal Fanconi syndrome. In addition to that, she showed liver cirrhosis, chronic kidney failure, and altered mitochondrial morphology and function. The clinical and biochemical phenotype had features of a new type of glycogen storage disease. Discussion: This case expands the p.(Arg85Trp) variant-specific phenotype. Possible pathomechanistic explanations for the documented multiorgan involvement and changes of symptoms and signs during development of this ultra-rare but instructive disorder are discussed.

5.
Nat Commun ; 13(1): 5032, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028511

RESUMEN

In pneumococcal meningitis, bacterial growth in the cerebrospinal fluid results in lysis, the release of toxic factors, and subsequent neuroinflammation. Exposure of primary murine glia to Streptococcus pneumoniae lysates leads to strong proinflammatory cytokine and chemokine production, blocked by inhibition of the intracellular innate receptor Nod1. Lysates enhance dynamin-dependent endocytosis, and dynamin inhibition reduces neuroinflammation, blocking ligand internalization. Here we identify the cholesterol-dependent cytolysin pneumolysin as a pro-endocytotic factor in lysates, its elimination reduces their proinflammatory effect. Only pore-competent pneumolysin enhances endocytosis in a dynamin-, phosphatidylinositol-3-kinase- and potassium-dependent manner. Endocytic enhancement is limited to toxin-exposed parts of the membrane, the effect is rapid and pneumolysin permanently alters membrane dynamics. In a murine model of pneumococcal meningitis, mice treated with chlorpromazine, a neuroleptic with a complementary endocytosis inhibitory effect show reduced neuroinflammation. Thus, the dynamin-dependent endocytosis emerges as a factor in pneumococcal neuroinflammation, and its enhancement by a cytolysin represents a proinflammatory control mechanism.


Asunto(s)
Meningitis Neumocócica , Streptococcus pneumoniae , Animales , Proteínas Bacterianas , Citotoxinas , Endocitosis , Inflamación , Ratones , Estreptolisinas
6.
Oncotarget ; 8(33): 54604-54615, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28903368

RESUMEN

Autophagy is a lysosomal degradation and recycling process implicated in cancer progression and therapy resistance. We assessed the impact of basal autophagy in colon cancer (CC) in vitro and ex vivo. Functional autophagy was demonstrated in CC cell lines (LoVo; HT-29) showing a dose-dependent increase of the autophagy markers LC3B, p62 and autophagic vesciles upon increasing concentrations of the autophagy inhibitor chloroquine, which was demonstrated by immunoblotting, immunofluorescence and electron microscopy. Next, tissue microarrays with 292 primary resected CC, with cores from different tumor regions, and normal mucosa were analyzed by immunohistochemistry for LC3B and p62. CC tissue showed LC3B dot-like, p62 dot-like, cytoplasmic and nuclear staining in various levels without significant intratumoral heterogeneity. Tumoral LC3B and p62 expression was significantly higher than in normal tissue (p<0.001). No associations between staining patterns and pathological features (e.g. TNM categories; grading) were observed. Both low LC3B dot-like and low p62 dot-like-cytoplasmic staining were associated with worse overall survival (p=0.005 and p=0.002). The best prognostic discrimination, however, was seen for a combination of LC3B dot-like/p62 dot-like-cytoplasmic staining: high expression of both markers, indicative of impaired activated autophagy, was associated with the best overall survival. In contrast, high LC3B dot-like/low p62 dot-like-cytoplasmic expression, indicative of intact activated autophagy, was associated with the worst outcome (p<0.001 in univariate and HR=0.751; CI=0.607-0.928; p=0.008 in multivariate analysis). These specific expression patterns of LC3B and p62 pointing to different states of autophagy associated with diverging clinical outcomes highlighte the potential significance of basal autophagy in CC biology.

7.
J Appl Physiol (1985) ; 119(10): 1118-26, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26384412

RESUMEN

The ultrastructure of capillaries in skeletal muscle was morphometrically assessed in vastus lateralis muscle (VL) biopsies taken before and after exercise from 22 participants of two training studies. In study 1 (8 wk of ergometer training), light microscopy revealed capillary-fiber (C/F) ratio (+27%) and capillary density (+16%) to be higher (P ≤ 0.05) in postexercise biopsies than in preexercise biopsies from all 10 participants. In study 2 (6 mo of moderate running), C/F ratio and capillary density were increased (+23% and +20%; respectively, P ≤ 0.05) in VL biopsies from 6 angiogenesis responders (AR) after training, whereas 6 nonangiogenesis responders (NR) showed nonsignificant changes in these structural indicators (-4%/-4%, respectively). Forty capillary profiles per participant were evaluated by point and intersection counting on cross sections after transmission electron microscopy. In study 1, volume density (Vv) and mean arithmetic thickness (T) of endothelial cells (ECs; +19%/+17%, respectively) and pericytes (PCs; +20%/+21%, respectively) were higher (P ≤ 0.05), whereas Vv and T of the pericapillary basement membrane (BM) were -23%/-22% lower (P ≤ 0.05), respectively, in posttraining biopsies. In study 2, exercise-related differences between AR and NR-groups were found for Vv and T of PCs (AR, +26%/+22%, respectively, both P ≤ 0.05; NR, +1%/-3%, respectively, both P > 0.05) and BM (AR, -14%/-13%, respectively, both P ≤ 0.05; NR, -9%/-11%, respectively, P = 0.07/0.10). Vv and T of ECs were higher (AR, +16%/+18%, respectively; NR, +6%/+6%, respectively; all P ≤ 0.05) in both groups. The PC coverage was higher (+13%, P ≤ 0.05) in VL biopsies of individuals in the AR group but nonsignificantly altered (+3%, P > 0.05) in those of the NR group after training. Our study suggests that intensified PC mobilization and BM thinning are related to exercise-induced angiogenesis in human skeletal muscle, whereas training per se induces EC-thickening.


Asunto(s)
Capilares/ultraestructura , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Músculo Esquelético/ultraestructura , Neovascularización Fisiológica/fisiología , Resistencia Física/fisiología , Adulto , Humanos , Masculino , Músculo Esquelético/irrigación sanguínea
8.
Physiol Genomics ; 15(2): 148-57, 2003 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-14565968

RESUMEN

It was hypothesized that transcriptional reprogramming is involved in the structural and functional adaptations of lipid metabolism in human tibialis anterior muscle (TA) from endurance-trained male subjects. RT-PCR experiments demonstrated a significant upregulation of the mRNA level of key enzymes involved in 1) lipolytic mobilization of fatty acids (FA) from intramyocellular lipid (IMCL) stores via hormone-sensitive lipase (LIPE), 2) intramyocellular FA transport via muscle fatty acid binding protein (FABP3), and 3) oxidative phosphorylation (cytochrome c oxidase I, COI), in TA of endurance-trained vs. untrained subjects. In contrast, mRNAs for factors involved in glycolysis (muscle 6-phosphofructokinase, PFKM), intramyocellular storage of FA (diacylglycerol O-acyltransferase 1, DGAT), and beta-oxidation (long-chain acyl-coenzyme A dehydrogenase, ACADL) were invariant between TA of trained and untrained subjects. Correlation analysis identified an association of LIPE with FABP3 and LPL (lipoprotein lipase) mRNA levels and indicated coregulation of the transcript level for LIPE, FABP3, and COI with the level of mRNA encoding peroxisome proliferator-activated receptor-alpha (PPAR-alpha), the master regulator of lipid metabolism. Moreover, a significant correlation existed between LPL mRNA and the absolute rate of IMCL repletion determined by magnetic resonance spectroscopy after exhaustive exercise. Additionally, the LIPE mRNA level correlated with ultrastructurally determined IMCL content and mitochondrial volume density. The present data point to a training-induced, selective increase in mRNA levels of enzymes which are involved in metabolization of intramuscular FA, and these data confirm the well-established phenomenon of enhanced lipid utilization during exercise at moderate intensity in muscles of endurance-trained subjects.


Asunto(s)
Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Resistencia Física , Transcripción Genética , Adaptación Fisiológica/genética , Enzimas/genética , Enzimas/metabolismo , Ácidos Grasos/metabolismo , Regulación Enzimológica de la Expresión Génica , Glucólisis/genética , Humanos , Masculino , Músculo Esquelético/enzimología , Oxidación-Reducción , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba
9.
Vet Microbiol ; 144(3-4): 487-92, 2010 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-20189733

RESUMEN

The lethal toxin of Clostridium sordellii (TcsL) evokes severe, mostly fatal disease patterns like toxic shock syndrome in humans and animals. Since this large clostridial toxin-induced severe muscle damaging when injected intramuscularly into mice, we hypothesized that TcsL is also associated with equine atypical myopathy (EAM), a fatal myodystrophy of hitherto unknown etiology. Transmission electron microscopy revealed skeletal and heart muscles of EAM-affected horses to undergo degeneration ultrastructurally similar to the damage found in TcsL-treated mice. Performing immunohistochemistry, myofibers of EAM-affected horses specifically reacted with sera derived from horses with EAM as well as an antibody specific for the N-terminal part of TcsL, while both antibodies failed to bind to the myofibers of either healthy horses or those with other myopathies. The presence of TcsL in myofibers of horses with EAM suggests that it plays a role as trigger or even as lethal factor in this disease.


Asunto(s)
Toxinas Bacterianas/aislamiento & purificación , Infecciones por Clostridium/veterinaria , Clostridium sordellii/metabolismo , Enfermedades de los Caballos/microbiología , Enfermedades Musculares/microbiología , Animales , Toxinas Bacterianas/metabolismo , Infecciones por Clostridium/microbiología , Femenino , Caballos , Masculino , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Miocardio/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA