Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(10): 1867-1884, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36130591

RESUMEN

Au-Kline syndrome (AKS) is a neurodevelopmental disorder associated with multiple malformations and a characteristic facial gestalt. The first individuals ascertained carried de novo loss-of-function (LoF) variants in HNRNPK. Here, we report 32 individuals with AKS (26 previously unpublished), including 13 with de novo missense variants. We propose new clinical diagnostic criteria for AKS that differentiate it from the clinically overlapping Kabuki syndrome and describe a significant phenotypic expansion to include individuals with missense variants who present with subtle facial features and few or no malformations. Many gene-specific DNA methylation (DNAm) signatures have been identified for neurodevelopmental syndromes. Because HNRNPK has roles in chromatin and epigenetic regulation, we hypothesized that pathogenic variants in HNRNPK may be associated with a specific DNAm signature. Here, we report a unique DNAm signature for AKS due to LoF HNRNPK variants, distinct from controls and Kabuki syndrome. This DNAm signature is also identified in some individuals with de novo HNRNPK missense variants, confirming their pathogenicity and the phenotypic expansion of AKS to include more subtle phenotypes. Furthermore, we report that some individuals with missense variants have an "intermediate" DNAm signature that parallels their milder clinical presentation, suggesting the presence of an epi-genotype phenotype correlation. In summary, the AKS DNAm signature may help elucidate the underlying pathophysiology of AKS. This DNAm signature also effectively supported clinical syndrome delineation and is a valuable aid for variant interpretation in individuals where a clinical diagnosis of AKS is unclear, particularly for mild presentations.


Asunto(s)
Metilación de ADN , Discapacidad Intelectual , Anomalías Múltiples , Cromatina , Metilación de ADN/genética , Epigénesis Genética , Cara/anomalías , Enfermedades Hematológicas , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Humanos , Discapacidad Intelectual/genética , Fenotipo , Enfermedades Vestibulares
2.
Am J Hum Genet ; 108(1): 8-15, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33417889

RESUMEN

The delineation of disease entities is complex, yet recent advances in the molecular characterization of diseases provide opportunities to designate diseases in a biologically valid manner. Here, we have formalized an approach to the delineation of Mendelian genetic disorders that encompasses two distinct but inter-related concepts: (1) the gene that is mutated and (2) the phenotypic descriptor, preferably a recognizably distinct phenotype. We assert that only by a combinatorial or dyadic approach taking both of these attributes into account can a unitary, distinct genetic disorder be designated. We propose that all Mendelian disorders should be designated as "GENE-related phenotype descriptor" (e.g., "CFTR-related cystic fibrosis"). This approach to delineating and naming disorders reconciles the complexity of gene-to-phenotype relationships in a simple and clear manner yet communicates the complexity and nuance of these relationships.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Genómica/métodos , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Genotipo , Humanos , Mutación/genética , Fenotipo
3.
Am J Med Genet A ; 194(6): e63514, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38329159

RESUMEN

Genetics has become a critical component of medicine over the past five to six decades. Alongside genetics, a relatively new discipline, dysmorphology, has also begun to play an important role in providing critically important diagnoses to individuals and families. Both have become indispensable to unraveling rare diseases. Almost every medical specialty relies on individuals experienced in these specialties to provide diagnoses for patients who present themselves to other doctors. Additionally, both specialties have become reliant on molecular geneticists to identify genes associated with human disorders. Many of the medical geneticists, dysmorphologists, and molecular geneticists traveled a circuitous route before arriving at the position they occupied. The purpose of collecting the memoirs contained in this article was to convey to the reader that many of the individuals who contributed to the advancement of genetics and dysmorphology since the late 1960s/early 1970s traveled along a journey based on many chances taken, replying to the necessities they faced along the way before finding full enjoyment in the practice of medical and human genetics or dysmorphology. Additionally, and of equal importance, all exhibited an ability to evolve with their field of expertise as human genetics became human genomics with the development of novel technologies.


Asunto(s)
Genética Médica , Humanos , Historia del Siglo XX , Historia del Siglo XXI , Genética Humana
4.
Prenat Diagn ; 44(2): 237-246, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37632214

RESUMEN

OBJECTIVE: Recurrent deletions involving 17q12 are associated with a variety of clinical phenotypes, including congenital abnormalities of the kidney and urinary tract (CAKUT), maturity onset diabetes of the young, type 5, and neurodevelopmental disorders. Structural and/or functional renal disease is the most common phenotypic feature, although the prenatal renal phenotypes and the postnatal correlates have not been well characterized. METHOD: We reviewed pre- and postnatal medical records of 26 cases with prenatally or postnatally identified 17q12/HNF1B microdeletions (by chromosomal microarray or targeted gene sequencing), obtained through a multicenter collaboration. We specifically evaluated 17 of these cases (65%) with reported prenatal renal ultrasound findings. RESULTS: Heterogeneous prenatal renal phenotypes were noted, most commonly renal cysts (41%, n = 7/17) and echogenic kidneys (41%), although nonspecific dysplasia, enlarged kidneys, hydronephrosis, pelvic kidney with hydroureter, and lower urinary tract obstruction were also reported. Postnatally, most individuals developed renal cysts (73%, 11/15 live births), and there were no cases of end-stage renal disease during childhood or the follow-up period. CONCLUSION: Our findings demonstrate that copy number variant analysis to assess for 17q12 microdeletion should be considered for a variety of prenatally detected renal anomalies. It is important to distinguish 17q12 microdeletion from other etiologies of CAKUT as the prognosis for renal function and presence of associated findings are distinct and may influence pregnancy and postnatal management.


Asunto(s)
Enfermedades Renales Quísticas , Enfermedades Renales , Anomalías Urogenitales , Reflujo Vesicoureteral , Embarazo , Femenino , Humanos , Deleción Cromosómica , Riñón/diagnóstico por imagen , Riñón/anomalías , Enfermedades Renales/congénito , Fenotipo , Enfermedades Renales Quísticas/diagnóstico por imagen , Enfermedades Renales Quísticas/genética , Factor Nuclear 1-beta del Hepatocito/genética , Estudios Multicéntricos como Asunto
5.
Am J Med Genet A ; 191(1): 29-36, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36177608

RESUMEN

De novo truncating and splicing pathogenic variants in the Additional Sex Combs-Like 3 (ASXL3) gene are known to cause neurodevelopmental delay, intellectual disability, behavioral difficulties, hypotonia, feeding problems and characteristic facial features. We previously reported 45 patients with ASXL3-related disorder including three individuals with a familial variant. Here we report the detailed clinical and molecular characteristics of these three families with inherited ASXL3-related disorder. First, a father and son with c.2791_2792del p.Gln931fs pathogenic variant. The second, a mother, daughter and son with c.4534C > T, p.Gln1512Ter pathogenic variant. The third, a mother and her daughter with c.4441dup, p.Leu1481fs maternally inherited pathogenic variant. This report demonstrates intrafamilial phenotypic heterogeneity and confirms heritability of ASXL3-related disorder.


Asunto(s)
Anomalías Múltiples , Discapacidades del Desarrollo , Discapacidad Intelectual , Niño , Femenino , Humanos , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Fenotipo , Síndrome , Factores de Transcripción/genética
6.
Am J Med Genet A ; 191(8): 2113-2131, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37377026

RESUMEN

Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (>60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS-like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or "DTRs"). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype-phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population.


Asunto(s)
Síndrome de Cornelia de Lange , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Factores de Transcripción/genética , Proteínas de Ciclo Celular/genética , Fenotipo , Mutación , Genómica , Estudios de Asociación Genética , Factores de Elongación Transcripcional/genética , Histona Desacetilasas/genética , Proteínas Represoras/genética
7.
Clin Genet ; 101(1): 32-47, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34240408

RESUMEN

Growth promoting variants in PIK3CA cause a spectrum of developmental disorders, depending on the developmental timing of the mutation and tissues involved. These phenotypically heterogeneous entities have been grouped as PIK3CA-Related Overgrowth Spectrum disorders (PROS). Deep sequencing technologies have facilitated detection of low-level mosaic, often necessitating testing of tissues other than blood. Since clinical management practices vary considerably among healthcare professionals and services across different countries, a consensus on management guidelines is needed. Clinical heterogeneity within this spectrum leads to challenges in establishing management recommendations, which must be based on patient-specific considerations. Moreover, as most of these conditions are rare, affected families may lack access to the medical expertise that is needed to help address the multi-system and often complex medical issues seen with PROS. In March 2019, macrocephaly-capillary malformation (M-CM) patient organizations hosted an expert meeting in Manchester, United Kingdom, to help address these challenges with regards to M-CM syndrome. We have expanded the scope of this project to cover PROS and developed this consensus statement on the preferred approach for managing affected individuals based on our current knowledge.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Nivel de Atención , Conferencias de Consenso como Asunto , Diagnóstico Diferencial , Manejo de la Enfermedad , Estudios de Asociación Genética/métodos , Pruebas Genéticas , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/terapia , Humanos , Fenotipo , Diagnóstico Prenatal
8.
Am J Med Genet A ; 188(11): 3350-3357, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35962715

RESUMEN

Microcephaly-Capillary Malformation syndrome (MIC-CAP) is a rare genetic disorder reported in 18 individuals to date. The clinical features typically include microcephaly, multiple cutaneous capillary malformations, seizures, neurologic impairment, and global developmental delay. Currently, there is little published information about the natural history and long-term outcomes for individuals with MIC-CAP. In this report, we provide follow up on two previously published patients and describe four new patients. The included patients highlight increased variability in the clinical spectrum and provide novel information regarding medical complications and recurrent variants.


Asunto(s)
Microcefalia , Malformaciones del Sistema Nervioso , Malformaciones Vasculares , Capilares/anomalías , Humanos , Microcefalia/diagnóstico , Microcefalia/genética , Malformaciones Vasculares/diagnóstico , Malformaciones Vasculares/genética
9.
Am J Hum Genet ; 103(2): 245-260, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30057031

RESUMEN

Interferon regulatory factor 2 binding protein-like (IRF2BPL) encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals who carry damaging heterozygous variants in IRF2BPL and are affected with neurological symptoms. Five individuals who carry IRF2BPL nonsense variants resulting in a premature stop codon display severe neurodevelopmental regression, hypotonia, progressive ataxia, seizures, and a lack of coordination. Two additional individuals, both with missense variants, display global developmental delay and seizures and a relatively milder phenotype than those with nonsense alleles. The IRF2BPL bioinformatics signature based on population genomics is consistent with a gene that is intolerant to variation. We show that the fruit-fly IRF2BPL ortholog, called pits (protein interacting with Ttk69 and Sin3A), is broadly detected, including in the nervous system. Complete loss of pits is lethal early in development, whereas partial knockdown with RNA interference in neurons leads to neurodegeneration, revealing a requirement for this gene in proper neuronal function and maintenance. The identified IRF2BPL nonsense variants behave as severe loss-of-function alleles in this model organism, and ectopic expression of the missense variants leads to a range of phenotypes. Taken together, our results show that IRF2BPL and pits are required in the nervous system in humans and flies, and their loss leads to a range of neurological phenotypes in both species.

10.
Clin Genet ; 99(4): 547-557, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33381861

RESUMEN

SATB2-Associated syndrome (SAS) is an autosomal dominant, multisystemic, neurodevelopmental disorder due to alterations in SATB2 at 2q33.1. A limited number of individuals with 2q33.1 contiguous deletions encompassing SATB2 (ΔSAS) have been described in the literature. We describe 17 additional individuals with ΔSAS, review the phenotype of 33 previously published individuals with 2q33.1 deletions (n = 50, mean age = 8.5 ± 7.8 years), and provide a comprehensive comparison to individuals with other molecular mechanisms that result in SAS (non-ΔSAS). Individuals in the ΔSAS group were often underweight for age (20/41 = 49%) with a progressive decline in weight (95% CI = -2.3 to -1.1, p < 0.0001) and height (95% CI = -2.3 to -1.0, p < 0.0001) Z-score means from birth to last available measurement. ΔSAS individuals were often noted to have a broad spectrum of facial dysmorphism. A composite image of ΔSAS individuals generated by automated image analysis was distinct as compared to matched controls and non-ΔSAS individuals. We also present additional genotype-phenotype correlations for individuals in the ΔSAS group such as an increased risk for aortic root/ascending aorta dilation and primary pulmonary hypertension for those individuals with contiguous gene deletions that include COL3A1/COL5A2 and BMPR2, respectively. Based on these findings, we provide additional care recommendations for individuals with ΔSAS variants.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 2/genética , Proteínas de Unión a la Región de Fijación a la Matriz/deficiencia , Factores de Transcripción/deficiencia , Adulto , Niño , Preescolar , Cromosomas Humanos Par 2/ultraestructura , Colágeno Tipo III/deficiencia , Colágeno Tipo III/genética , Colágeno Tipo V/deficiencia , Colágeno Tipo V/genética , Enanismo/genética , Cara/anomalías , Femenino , Estudios de Asociación Genética , Edad Gestacional , Humanos , Hipertensión Pulmonar/genética , Lactante , Masculino , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Microcefalia/genética , Fenotipo , Delgadez/genética , Factores de Transcripción/genética
11.
Am J Med Genet A ; 185(9): 2719-2738, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34087052

RESUMEN

Cyclin D2 (CCND2) is a critical cell cycle regulator and key member of the cyclin D2-CDK4 (DC) complex. De novo variants of CCND2 clustering in the distal part of the protein have been identified as pathogenic causes of brain overgrowth (megalencephaly, MEG) and severe cortical malformations in children including the megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome. Megalencephaly-associated CCND2 variants are localized to the terminal exon and result in accumulation of degradation-resistant protein. We identified five individuals from three unrelated families with novel variants in the proximal region of CCND2 associated with microcephaly, mildly simplified cortical gyral pattern, symmetric short stature, and mild developmental delay. Identified variants include de novo frameshift variants and a dominantly inherited stop-gain variant segregating with the phenotype. This is the first reported association between proximal CCND2 variants and microcephaly, to our knowledge. This series expands the phenotypic spectrum of CCND2-related disorders and suggests that distinct classes of CCND2 variants are associated with reciprocal effects on human brain growth (microcephaly and megalencephaly due to possible loss or gain of protein function, respectively), adding to the growing paradigm of inverse phenotypes due to dysregulation of key brain growth genes.


Asunto(s)
Encéfalo/anomalías , Ciclina D2/genética , Hidrocefalia/patología , Megalencefalia/patología , Mutación , Polidactilia/patología , Polimicrogiria/patología , Adolescente , Adulto , Niño , Femenino , Humanos , Hidrocefalia/genética , Lactante , Masculino , Megalencefalia/genética , Polidactilia/genética , Polimicrogiria/genética
12.
Am J Med Genet A ; 185(7): 2136-2149, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33783941

RESUMEN

Van den Ende-Gupta syndrome (VDEGS) is a rare autosomal recessive condition characterized by distinctive facial and skeletal features, and in most affected persons, by biallelic pathogenic variants in SCARF2. We review the type and frequency of the clinical features in 36 reported individuals with features of VDEGS, 15 (42%) of whom had known pathogenic variants in SCARF2, 6 (16%) with negative SCARF2 testing, and 15 (42%) not tested. We also report three new individuals with pathogenic variants in SCARF2 and clinical features of VDEGS. Of the six persons without known pathogenic variants in SCARF2, three remain unsolved despite extensive genetic testing. Three were found to have pathogenic ABL1 variants using whole exome sequencing (WES) or whole genome sequencing (WGS). Their phenotype was consistent with the congenital heart disease and skeletal malformations syndrome (CHDSKM), which has been associated with ABL1 variants. Of the three unsolved cases, two were brothers who underwent WGS and targeted long-range sequencing of both SCARF2 and ABL1, and the third person who underwent WES and RNA sequencing for SCARF2. Because these affected individuals with classical features of VDEGS lacked a detectable pathogenic SCARF2 variant, genetic heterogeneity is likely. Our study shows the importance of performing genetic testing on individuals with the VDEGS "phenotype," either as a targeted gene analysis (SCARF2, ABL1) or WES/WGS. Additionally, individuals with the combination of arachnodactyly and blepharophimosis should undergo echocardiography while awaiting results of molecular testing due to the overlapping physical features of VDEGS and CHDSKM.


Asunto(s)
Anomalías Múltiples/genética , Aracnodactilia/genética , Blefarofimosis/genética , Contractura/genética , Cardiopatías Congénitas/genética , Proteínas Proto-Oncogénicas c-abl/genética , Receptores Depuradores de Clase F/genética , Anomalías Múltiples/patología , Adolescente , Adulto , Aracnodactilia/patología , Blefarofimosis/patología , Niño , Preescolar , Contractura/patología , Femenino , Genes Recesivos/genética , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/patología , Humanos , Lactante , Masculino , Persona de Mediana Edad , Secuenciación del Exoma , Adulto Joven
13.
Am J Med Genet A ; 185(6): 1649-1665, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33783954

RESUMEN

Wiedemann-Steiner syndrome (WSS) is an autosomal dominant disorder caused by monoallelic variants in KMT2A and characterized by intellectual disability and hypertrichosis. We performed a retrospective, multicenter, observational study of 104 individuals with WSS from five continents to characterize the clinical and molecular spectrum of WSS in diverse populations, to identify physical features that may be more prevalent in White versus Black Indigenous People of Color individuals, to delineate genotype-phenotype correlations, to define developmental milestones, to describe the syndrome through adulthood, and to examine clinicians' differential diagnoses. Sixty-nine of the 82 variants (84%) observed in the study were not previously reported in the literature. Common clinical features identified in the cohort included: developmental delay or intellectual disability (97%), constipation (63.8%), failure to thrive (67.7%), feeding difficulties (66.3%), hypertrichosis cubiti (57%), short stature (57.8%), and vertebral anomalies (46.9%). The median ages at walking and first words were 20 months and 18 months, respectively. Hypotonia was associated with loss of function (LoF) variants, and seizures were associated with non-LoF variants. This study identifies genotype-phenotype correlations as well as race-facial feature associations in an ethnically diverse cohort, and accurately defines developmental trajectories, medical comorbidities, and long-term outcomes in individuals with WSS.


Asunto(s)
Predisposición Genética a la Enfermedad , Trastornos del Crecimiento/genética , N-Metiltransferasa de Histona-Lisina/genética , Hipertricosis/congénito , Discapacidad Intelectual/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Población Negra/genética , Estreñimiento/epidemiología , Estreñimiento/genética , Estreñimiento/patología , Insuficiencia de Crecimiento/epidemiología , Insuficiencia de Crecimiento/genética , Insuficiencia de Crecimiento/patología , Estudios de Asociación Genética , Trastornos del Crecimiento/epidemiología , Trastornos del Crecimiento/patología , Humanos , Hipertricosis/epidemiología , Hipertricosis/genética , Hipertricosis/patología , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/patología , Mutación con Pérdida de Función/genética , Estudios Retrospectivos , Población Blanca/genética
14.
Brain ; 142(11): 3351-3359, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504246

RESUMEN

Using trio exome sequencing, we identified de novo heterozygous missense variants in PAK1 in four unrelated individuals with intellectual disability, macrocephaly and seizures. PAK1 encodes the p21-activated kinase, a major driver of neuronal development in humans and other organisms. In normal neurons, PAK1 dimers reside in a trans-inhibited conformation, where each autoinhibitory domain covers the kinase domain of the other monomer. Upon GTPase binding via CDC42 or RAC1, the PAK1 dimers dissociate and become activated. All identified variants are located within or close to the autoinhibitory switch domain that is necessary for trans-inhibition of resting PAK1 dimers. Protein modelling supports a model of reduced ability of regular autoinhibition, suggesting a gain of function mechanism for the identified missense variants. Alleviated dissociation into monomers, autophosphorylation and activation of PAK1 influences the actin dynamics of neurite outgrowth. Based on our clinical and genetic data, as well as the role of PAK1 in brain development, we suggest that gain of function pathogenic de novo missense variants in PAK1 lead to moderate-to-severe intellectual disability, macrocephaly caused by the presence of megalencephaly and ventriculomegaly, (febrile) seizures and autism-like behaviour.


Asunto(s)
Discapacidad Intelectual/genética , Megalencefalia/genética , Convulsiones/genética , Quinasas p21 Activadas/genética , Actinas/metabolismo , Adolescente , Trastorno Autístico/genética , Niño , Preescolar , Femenino , GTP Fosfohidrolasas/metabolismo , Humanos , Discapacidad Intelectual/psicología , Masculino , Megalencefalia/psicología , Modelos Moleculares , Mutación Missense/genética , Fosforilación , Convulsiones/psicología , Transducción de Señal/genética , Secuenciación del Exoma , Adulto Joven , Proteína de Unión al GTP cdc42/metabolismo , Quinasas p21 Activadas/química , Proteína de Unión al GTP rac1/metabolismo
15.
Neurogenetics ; 20(3): 129-143, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31041561

RESUMEN

We previously reported a pathogenic de novo p.R342W mutation in the transcriptional corepressor CTBP1 in four independent patients with neurodevelopmental disabilities [1]. Here, we report the clinical phenotypes of seven additional individuals with the same recurrent de novo CTBP1 mutation. Within this cohort, we identified consistent CtBP1-related phenotypes of intellectual disability, ataxia, hypotonia, and tooth enamel defects present in most patients. The R342W mutation in CtBP1 is located within a region implicated in a high affinity-binding cleft for CtBP-interacting proteins. Unbiased proteomic analysis demonstrated reduced interaction of several chromatin-modifying factors with the CtBP1 W342 mutant. Genome-wide transcriptome analysis in human glioblastoma cell lines expressing -CtBP1 R342 (wt) or W342 mutation revealed changes in the expression profiles of genes controlling multiple cellular processes. Patient-derived dermal fibroblasts were found to be more sensitive to apoptosis during acute glucose deprivation compared to controls. Glucose deprivation strongly activated the BH3-only pro-apoptotic gene NOXA, suggesting a link between enhanced cell death and NOXA expression in patient fibroblasts. Our results suggest that context-dependent relief of transcriptional repression of the CtBP1 mutant W342 allele may contribute to deregulation of apoptosis in target tissues of patients leading to neurodevelopmental phenotypes.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Proteínas de Unión al ADN/genética , Mutación Missense , Adolescente , Oxidorreductasas de Alcohol/metabolismo , Alelos , Apoptosis , Ataxia/complicaciones , Ataxia/genética , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Niño , Preescolar , Cromatina/química , Proteínas de Unión al ADN/metabolismo , Femenino , Fibroblastos/metabolismo , Glioblastoma/genética , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Masculino , Hipotonía Muscular/complicaciones , Hipotonía Muscular/genética , Fenotipo , Unión Proteica , Proteómica , Anomalías Dentarias/complicaciones , Anomalías Dentarias/genética , Adulto Joven
16.
Am J Med Genet C Semin Med Genet ; 181(4): 483-490, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31793186

RESUMEN

This introduction to the special issue of AJMG Part C: Overgrowth Syndromes updates the current understanding of overgrowth syndromes. We clarify the terminology associated with overgrowth, review some common pathways to overgrowth and present a preliminary classification based on currently known genomic and epigenetic mechanisms. We introduce the articles of this issue-new research and reviews of well-established and recently described overgrowth syndromes of the brain, body or both.


Asunto(s)
Trastornos del Crecimiento/genética , Encéfalo/crecimiento & desarrollo , Humanos , Síndrome
17.
Am J Med Genet C Semin Med Genet ; 181(4): 548-556, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31737996

RESUMEN

The nucleosome remodeling and deacetylase (NuRD) complex is a major regulator of gene expression involved in pluripotency, lineage commitment, and corticogenesis. This important complex is composed of seven different proteins, with mutations in CHD3, CHD4, and GATAD2B being associated with neurodevelopmental disorders presenting with macrocephaly and intellectual disability similar to other overgrowth and intellectual disability (OGID) syndromes. Pathogenic variants in CHD3 and CHD4 primarily involve disruption of enzymatic function. GATAD2B variants include loss-of-function mutations that alter protein dosage and missense variants that involve either of two conserved domains (CR1 and CR2) known to interact with other NuRD proteins. In addition to macrocephaly and intellectual disability, CHD3 variants are associated with inguinal hernias and apraxia of speech; whereas CHD4 variants are associated with skeletal anomalies, deafness, and cardiac defects. GATAD2B-associated neurodevelopmental disorder (GAND) has phenotypic overlap with both of these disorders. Of note, structural models of NuRD indicate that CHD3 and CHD4 require direct contact with the GATAD2B-CR2 domain to interact with the rest of the complex. Therefore, the phenotypic overlaps of CHD3- and CHD4-related disorders with GAND are consistent with a loss in the ability of GATAD2B to recruit CHD3 or CHD4 to the complex. The shared features of these neurodevelopmental disorders may represent a new class of OGID syndrome: the NuRDopathies.


Asunto(s)
Megalencefalia/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/fisiología , Trastornos del Neurodesarrollo/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Síndrome
18.
Am J Med Genet C Semin Med Genet ; 181(4): 557-564, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31721432

RESUMEN

CHD8 has been reported as an autism susceptibility/intellectual disability gene but emerging evidence suggests that it additionally causes an overgrowth phenotype. This study reports 27 unrelated patients with pathogenic or likely pathogenic CHD8 variants (25 null variants, two missense variants) and a male:female ratio of 21:6 (3.5:1, p < .01). All patients presented with intellectual disability, with 85% in the mild or moderate range, and 85% had a height and/or head circumference ≥2 standard deviations above the mean, meeting our clinical criteria for overgrowth. Behavioral problems were reported in the majority of patients (78%), with over half (56%) either formally diagnosed with an autistic spectrum disorder or described as having autistic traits. Additional clinical features included neonatal hypotonia (33%), and less frequently seizures, pes planus, scoliosis, fifth finger clinodactyly, umbilical hernia, and glabellar hemangioma (≤15% each). These results suggest that, in addition to its established link with autism and intellectual disability, CHD8 causes an overgrowth phenotype, and should be considered in the differential diagnosis of patients presenting with increased height and/or head circumference in association with intellectual disability.


Asunto(s)
Cadherinas/genética , Trastornos del Crecimiento/genética , Fenotipo , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Síndrome , Adulto Joven
19.
Am J Hum Genet ; 99(4): 962-973, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27666370

RESUMEN

Microtubules are dynamic cytoskeletal elements coordinating and supporting a variety of neuronal processes, including cell division, migration, polarity, intracellular trafficking, and signal transduction. Mutations in genes encoding tubulins and microtubule-associated proteins are known to cause neurodevelopmental and neurodegenerative disorders. Growing evidence suggests that altered microtubule dynamics may also underlie or contribute to neurodevelopmental disorders and neurodegeneration. We report that biallelic mutations in TBCD, encoding one of the five co-chaperones required for assembly and disassembly of the αß-tubulin heterodimer, the structural unit of microtubules, cause a disease with neurodevelopmental and neurodegenerative features characterized by early-onset cortical atrophy, secondary hypomyelination, microcephaly, thin corpus callosum, developmental delay, intellectual disability, seizures, optic atrophy, and spastic quadriplegia. Molecular dynamics simulations predicted long-range and/or local structural perturbations associated with the disease-causing mutations. Biochemical analyses documented variably reduced levels of TBCD, indicating relative instability of mutant proteins, and defective ß-tubulin binding in a subset of the tested mutants. Reduced or defective TBCD function resulted in decreased soluble α/ß-tubulin levels and accelerated microtubule polymerization in fibroblasts from affected subjects, demonstrating an overall shift toward a more rapidly growing and stable microtubule population. These cells displayed an aberrant mitotic spindle with disorganized, tangle-shaped microtubules and reduced aster formation, which however did not alter appreciably the rate of cell proliferation. Our findings establish that defective TBCD function underlies a recognizable encephalopathy and drives accelerated microtubule polymerization and enhanced microtubule stability, underscoring an additional cause of altered microtubule dynamics with impact on neuronal function and survival in the developing brain.


Asunto(s)
Alelos , Encefalopatías/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Mutación , Pliegue de Proteína , Tubulina (Proteína)/metabolismo , Adolescente , Edad de Inicio , Encéfalo/metabolismo , Encéfalo/patología , Encefalopatías/patología , Proliferación Celular , Preescolar , Femenino , Fibroblastos , Humanos , Lactante , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/patología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Unión Proteica , Huso Acromático/metabolismo , Huso Acromático/patología , Tubulina (Proteína)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA