Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
EMBO J ; 42(4): e112118, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36594367

RESUMEN

Sensory-independent Ca2+ spiking regulates the development of mammalian sensory systems. In the immature cochlea, inner hair cells (IHCs) fire spontaneous Ca2+ action potentials (APs) that are generated either intrinsically or by intercellular Ca2+ waves in the nonsensory cells. The extent to which either or both of these Ca2+ signalling mechansims are required for IHC maturation is unknown. We find that intrinsic Ca2+ APs in IHCs, but not those elicited by Ca2+ waves, regulate the maturation and maintenance of the stereociliary hair bundles. Using a mouse model in which the potassium channel Kir2.1 is reversibly overexpressed in IHCs (Kir2.1-OE), we find that IHC membrane hyperpolarization prevents IHCs from generating intrinsic Ca2+ APs but not APs induced by Ca2+ waves. Absence of intrinsic Ca2+ APs leads to the loss of mechanoelectrical transduction in IHCs prior to hearing onset due to progressive loss or fusion of stereocilia. RNA-sequencing data show that pathways involved in morphogenesis, actin filament-based processes, and Rho-GTPase signaling are upregulated in Kir2.1-OE mice. By manipulating in vivo expression of Kir2.1 channels, we identify a "critical time period" during which intrinsic Ca2+ APs in IHCs regulate hair-bundle function.


Asunto(s)
Células Ciliadas Auditivas Internas , Transducción de Señal , Animales , Células Ciliadas Auditivas Internas/fisiología , Potenciales de Acción/fisiología , Cóclea/fisiología , Mamíferos
2.
J Physiol ; 602(20): 5329-5351, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39324853

RESUMEN

Spiral ganglion neurons (SGNs) are primary sensory afferent neurons that relay acoustic information from the cochlear inner hair cells (IHCs) to the brainstem. The response properties of different SGNs diverge to represent a wide range of sound intensities in an action-potential code. This biophysical heterogeneity is established during pre-hearing stages of development, a time when IHCs fire spontaneous Ca2+ action potentials that drive glutamate release from their ribbon synapses onto the SGN terminals. The role of spontaneous IHC activity in the refinement of SGN characteristics is still largely unknown. Using pre-hearing otoferlin knockout mice (Otof-/-), in which Ca2+-dependent exocytosis in IHCs is abolished, we found that developing SGNs fail to upregulate low-voltage-activated K+-channels and hyperpolarisation-activated cyclic-nucleotide-gated channels. This delayed maturation resulted in hyperexcitable SGNs with immature firing characteristics. We have also shown that SGNs that synapse with the pillar side of the IHCs selectively express a resurgent K+ current, highlighting a novel biophysical marker for these neurons. RNA-sequencing showed that several K+ channels are downregulated in Otof-/- mice, further supporting the electrophysiological recordings. Our data demonstrate that spontaneous Ca2+-dependent activity in pre-hearing IHCs regulates some of the key biophysical and molecular features of the developing SGNs. KEY POINTS: Ca2+-dependent exocytosis in inner hair cells (IHCs) is otoferlin-dependent as early as postnatal day 1. A lack of otoferlin in IHCs affects potassium channel expression in SGNs. The absence of otoferlin is associated with SGN hyperexcitability. We propose that type I spiral ganglion neuron functional maturation depends on IHC exocytosis.


Asunto(s)
Células Ciliadas Auditivas Internas , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Proteínas de la Membrana , Ratones Noqueados , Ganglio Espiral de la Cóclea , Animales , Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Internas/metabolismo , Ganglio Espiral de la Cóclea/fisiología , Ganglio Espiral de la Cóclea/metabolismo , Ratones , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Regulación hacia Arriba , Canales de Potasio/metabolismo , Canales de Potasio/fisiología , Ratones Endogámicos C57BL , Exocitosis/fisiología , Potenciales de Acción/fisiología
3.
Proc Natl Acad Sci U S A ; 114(28): E5635-E5644, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28630288

RESUMEN

The PIWI-interacting RNA (piRNA) pathway is essential for retrotransposon silencing. In piRNA-deficient mice, L1-overexpressing male germ cells exhibit excessive DNA damage and meiotic defects. It remains unknown whether L1 expression simply highlights piRNA deficiency or actually drives the germ-cell demise. Specifically, the sheer abundance of genomic L1 copies prevents reliable quantification of new insertions. Here, we developed a codon-optimized L1 transgene that is controlled by an endogenous mouse L1 promoter. Importantly, DNA methylation dynamics of a single-copy transgene were indistinguishable from those of endogenous L1s. Analysis of Mov10l1-/- testes established that de novo methylation of the L1 transgene required the intact piRNA pathway. Consistent with loss of DNA methylation and programmed reduction of H3K9me2 at meiotic onset, the transgene showed 1,400-fold increase in RNA expression and consequently 70-fold increase in retrotransposition in postnatal day 14 Mov10l1-/- germ cells compared with the wild-type. Analysis of adult Mov10l1-/- germ-cell fractions indicated a stage-specific increase of retrotransposition in the early meiotic prophase. However, extrapolation of the transgene data to endogenous L1s suggests that it is unlikely insertional mutagenesis alone accounts for the Mov10l1-/- phenotype. Indeed, pharmacological inhibition of reverse transcription did not rescue the meiotic defect. Cumulatively, these results establish the occurrence of productive L1 mobilization in the absence of an intact piRNA pathway but leave open the possibility of processes preceding L1 integration in triggering meiotic checkpoints and germ-cell death. Additionally, our data suggest that many heritable L1 insertions originate from individuals with partially compromised piRNA defense.


Asunto(s)
Meiosis , ARN Interferente Pequeño/metabolismo , Retroelementos , Transgenes , Regiones no Traducidas 5' , Animales , Codón , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Masculino , Metilación , Ratones , Ratones Transgénicos , Sistemas de Lectura Abierta , Fenotipo , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Espermatocitos/metabolismo , Espermatogénesis , Testículo/metabolismo
4.
Genome Res ; 25(8): 1135-46, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25995269

RESUMEN

Long interspersed elements (LINEs), through both self-mobilization and trans-mobilization of short interspersed elements and processed pseudogenes, have made an indelible impact on the structure and function of the human genome. One consequence is the creation of new CpG islands (CGIs). In fact, more than half of all CGIs in the genome are associated with repetitive DNA, three-quarters of which are derived from retrotransposons. However, little is known about the epigenetic impact of newly inserted CGIs. We utilized a transgenic LINE-1 mouse model and tracked DNA methylation dynamics of individual germline insertions during mouse development. The retrotransposed GFP marker sequence, a strong CGI, is hypomethylated in male germ cells but hypermethylated in somatic tissues, regardless of genomic location. The GFP marker is similarly methylated when delivered into the genome via the Sleeping Beauty DNA transposon, suggesting that the observed methylation pattern may be independent of the mode of insertion. Comparative analyses between insertion- and non-insertion-containing alleles further reveal a graded influence of the retrotransposed CGI on flanking CpG sites, a phenomenon that we described as "sloping shores." Computational analyses of human and mouse methylomic data at single-base resolution confirm that sloping shores are universal for hypomethylated CGIs in sperm and somatic tissues. Additionally, the slope of a hypomethylated CGI can be affected by closely positioned CGI neighbors. Finally, by tracing sloping shore dynamics through embryonic and germ cell reprogramming, we found evidence of bookmarking, a mechanism that likely determines which CGIs will be eventually hyper- or hypomethylated.


Asunto(s)
Islas de CpG , Elementos de Nucleótido Esparcido Largo , Ratones Transgénicos/crecimiento & desarrollo , Ratones Transgénicos/genética , Animales , Biología Computacional/métodos , Metilación de ADN , Elementos Transponibles de ADN , Epigénesis Genética , Genoma , Humanos , Masculino , Ratones , Espermatozoides/crecimiento & desarrollo
6.
PLoS Genet ; 10(2): e1004068, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24550734

RESUMEN

Epidermolysis Bullosa (EB) encompasses a spectrum of mechanobullous disorders caused by rare mutations that result in structural weakening of the skin and mucous membranes. While gene mutated and types of mutations present are broadly predictive of the range of disease to be expected, a remarkable amount of phenotypic variability remains unaccounted for in all but the most deleterious cases. This unexplained variance raises the possibility of genetic modifier effects. We tested this hypothesis using a mouse model that recapitulates a non-Herlitz form of junctional EB (JEB) owing to the hypomorphic jeb allele of laminin gamma 2 (Lamc2). By varying normally asymptomatic background genetics, we document the potent impact of genetic modifiers on the strength of dermal-epidermal adhesion and on the clinical severity of JEB in the context of the Lamc2(jeb) mutation. Through an unbiased genetic approach involving a combination of QTL mapping and positional cloning, we demonstrate that Col17a1 is a strong genetic modifier of the non-Herlitz JEB that develops in Lamc2(jeb) mice. This modifier is defined by variations in 1-3 neighboring amino acids in the non-collagenous 4 domain of the collagen XVII protein. These allelic variants alter the strength of dermal-epidermal adhesion in the context of the Lamc2(jeb) mutation and, consequentially, broadly impact the clinical severity of JEB. Overall the results provide an explanation for how normally innocuous allelic variants can act epistatically with a disease causing mutation to impact the severity of a rare, heritable mechanobullous disorder.


Asunto(s)
Autoantígenos/genética , Epidermólisis Ampollosa de la Unión/genética , Epistasis Genética , Laminina/genética , Colágenos no Fibrilares/genética , Animales , Modelos Animales de Enfermedad , Epidermólisis Ampollosa de la Unión/etiología , Epidermólisis Ampollosa de la Unión/patología , Variación Genética , Ratones , Mutación , Colágeno Tipo XVII
7.
Mol Biol Evol ; 30(3): 503-12, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23125228

RESUMEN

Interspersed and tandem repeat sequences comprise the bulk of mammalian genomes. Interspersed repeats result from successive replication by transposable elements, such as Alu and long interspersed element type 1 (L1). Microsatellites are tandem repeats of 1-6 base pairs, among which poly(A) microsatellites are the most abundant in the human genome. The rise and fall of a microsatellite has been depicted as a life cycle. Previous studies have demonstrated that Alu and L1 insertions are a major source of A-rich microsatellites owing to the concurrent formation of a poly(A) DNA tract at the 3'-end of each insertion. The fate of such poly(A) tracts has been studied by surveying the length distribution of genomic resident Alu and L1 insertions. However, these cross-sectional studies provide no information about the tempo of mutation immediately after birth. In this study, de novo L1 insertions were created using a transgenic L1 mouse model and traced through generations to investigate the early life of poly(A) microsatellites. High frequencies of intra-individual and intergenerational shortening were observed for long poly(A) tracts, creating somatic and germline mosaicism at the insertion site, whereas little variation was observed for short poly(A) alleles. As poly(A) microsatellites are the major intrinsic signal for nucleosome positioning, their remarkable abundance and variability make them a significant source of epigenetic variation. Thus, the birth of poly(A) microsatellites from retrotransposons and the subsequent rapid and variable shortening represent a new way with which retrotransposons can modify the genetic and epigenetic architecture of our genome.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Repeticiones de Microsatélite , Mosaicismo , Poli A/genética , Animales , Células de la Médula Ósea , Células Cultivadas , Cromosomas de los Mamíferos , Femenino , Variación Genética , Células Germinativas , Masculino , Ratones , Ratones Transgénicos , Mutagénesis Insercional
8.
Cell Rep ; 43(4): 114025, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38564333

RESUMEN

Type I spiral ganglion neurons (SGNs) convey sound information to the central auditory pathway by forming synapses with inner hair cells (IHCs) in the mammalian cochlea. The molecular mechanisms regulating the formation of the post-synaptic density (PSD) in the SGN afferent terminals are still unclear. Here, we demonstrate that brain-specific angiogenesis inhibitor 1 (BAI1) is required for the clustering of AMPA receptors GluR2-4 (glutamate receptors 2-4) at the PSD. Adult Bai1-deficient mice have functional IHCs but fail to transmit information to the SGNs, leading to highly raised hearing thresholds. Despite the almost complete absence of AMPA receptor subunits, the SGN fibers innervating the IHCs do not degenerate. Furthermore, we show that AMPA receptors are still expressed in the cochlea of Bai1-deficient mice, highlighting a role for BAI1 in trafficking or anchoring GluR2-4 to the PSDs. These findings identify molecular and functional mechanisms required for sound encoding at cochlear ribbon synapses.


Asunto(s)
Cóclea , Audición , Densidad Postsináptica , Receptores AMPA , Receptores Acoplados a Proteínas G , Ganglio Espiral de la Cóclea , Animales , Receptores AMPA/metabolismo , Ratones , Ganglio Espiral de la Cóclea/metabolismo , Audición/fisiología , Cóclea/metabolismo , Densidad Postsináptica/metabolismo , Ratones Noqueados , Células Ciliadas Auditivas Internas/metabolismo , Ratones Endogámicos C57BL , Sinapsis/metabolismo
9.
Nat Commun ; 14(1): 4947, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587197

RESUMEN

Assay for Transposase Accessible Chromatin by sequencing (ATAC-seq) accurately depicts the chromatin regulatory state and altered mechanisms guiding gene expression in disease. However, bulk sequencing entangles information from different cell types and obscures cellular heterogeneity. To address this, we developed Cellformer, a deep learning method that deconvolutes bulk ATAC-seq into cell type-specific expression across the whole genome. Cellformer enables cost-effective cell type-specific open chromatin profiling in large cohorts. Applied to 191 bulk samples from 3 brain regions, Cellformer identifies cell type-specific gene regulatory mechanisms involved in resilience to Alzheimer's disease, an uncommon group of cognitively healthy individuals that harbor a high pathological load of Alzheimer's disease. Cell type-resolved chromatin profiling unveils cell type-specific pathways and nominates potential epigenetic mediators underlying resilience that may illuminate therapeutic opportunities to limit the cognitive impact of the disease. Cellformer is freely available to facilitate future investigations using high-throughput bulk ATAC-seq data.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Cromatina/genética , Bioensayo , Ciclo Celular , Epigénesis Genética
10.
Nat Protoc ; 17(6): 1518-1552, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35478247

RESUMEN

The assay for transposase-accessible chromatin using sequencing (ATAC-seq) provides a simple and scalable way to detect the unique chromatin landscape associated with a cell type and how it may be altered by perturbation or disease. ATAC-seq requires a relatively small number of input cells and does not require a priori knowledge of the epigenetic marks or transcription factors governing the dynamics of the system. Here we describe an updated and optimized protocol for ATAC-seq, called Omni-ATAC, that is applicable across a broad range of cell and tissue types. The ATAC-seq workflow has five main steps: sample preparation, transposition, library preparation, sequencing and data analysis. This protocol details the steps to generate and sequence ATAC-seq libraries, with recommendations for sample preparation and downstream bioinformatic analysis. ATAC-seq libraries for roughly 12 samples can be generated in 10 h by someone familiar with basic molecular biology, and downstream sequencing analysis can be implemented using benchmarked pipelines by someone with basic bioinformatics skills and with access to a high-performance computing environment.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Cromatina/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Transposasas/genética , Transposasas/metabolismo
11.
Science ; 373(6560): eabj2685, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34516796

RESUMEN

Although traumatic brain injury (TBI) acutely disrupts the cortex, most TBI-related disabilities reflect secondary injuries that accrue over time. The thalamus is a likely site of secondary damage because of its reciprocal connections with the cortex. Using a mouse model of mild TBI (mTBI), we found a chronic increase in C1q expression specifically in the corticothalamic system. Increased C1q expression colocalized with neuron loss and chronic inflammation and correlated with disruption in sleep spindles and emergence of epileptic activities. Blocking C1q counteracted these outcomes, suggesting that C1q is a disease modifier in mTBI. Single-nucleus RNA sequencing demonstrated that microglia are a source of thalamic C1q. The corticothalamic circuit could thus be a new target for treating TBI-related disabilities.


Asunto(s)
Lesiones Encefálicas/complicaciones , Complemento C1q/fisiología , Fases del Sueño , Trastornos del Sueño-Vigilia/etiología , Trastornos del Sueño-Vigilia/fisiopatología , Tálamo/fisiopatología , Animales , Lesiones Encefálicas/fisiopatología , Complemento C1q/genética , Modelos Animales de Enfermedad , Epilepsia/fisiopatología , Ratones , Microglía/metabolismo , Tálamo/metabolismo
12.
Sci Transl Med ; 12(539)2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32295898

RESUMEN

Osteoarthritis (OA) is a degenerative disease of the joint, which results in pain, loss of mobility, and, eventually, joint replacement. Currently, no disease-modifying drugs exist, partly because of the multiple levels at which cartilage homeostasis is disrupted. Recent studies have highlighted the importance of epigenetic dysregulation in OA, sparking interest in the epigenetic modulation for this disease. In our previous work, we characterized a fivefold increase in cytosine hydroxymethylation (5hmC), an oxidized derivative of cytosine methylation (5mC) associated with gene activation, accumulating at OA-associated genes. To test the role of 5hmC in OA, here, we used a mouse model of surgically induced OA and found that OA onset was accompanied by a gain of ~40,000 differentially hydroxymethylated sites before the notable histological appearance of disease. We demonstrated that ten-eleven-translocation enzyme 1 (TET1) mediates the 5hmC deposition because 98% of sites enriched for 5hmC in OA were lost in Tet1-/- mice. Loss of TET1-mediated 5hmC protected the Tet1-/- mice from OA development, including degeneration of the cartilage surface and osteophyte formation, by directly preventing the activation of multiple OA pathways. Loss of TET1 in human OA chondrocytes reduced the expression of the matrix metalloproteinases MMP3 and MMP13 and multiple inflammatory cytokines. Intra-articular injections of a dioxygenases inhibitor, 2-hydroxyglutarate, on mice after surgical induction of OA stalled disease progression. Treatment of human OA chondrocytes with the same inhibitor also phenocopied TET1 loss. Collectively, these data demonstrate that TET1-mediated 5hmC deposition regulates multiple OA pathways and can be modulated for therapeutic intervention.


Asunto(s)
Proteínas de Unión al ADN , Oxigenasas de Función Mixta , Osteoartritis , Preparaciones Farmacéuticas , Proteínas Proto-Oncogénicas , 5-Metilcitosina , Animales , Proteínas de Unión al ADN/genética , Ratones , Osteoartritis/genética , Proteínas Proto-Oncogénicas/genética
13.
Mob Genet Elements ; 3(4): e25674, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24195012

RESUMEN

The human genome is laden with both non-LTR (long-terminal repeat) retrotransposons and microsatellite repeats. Both types of sequences are able to, either actively or passively, mutagenize the genomes of human individuals and are therefore poised to dynamically alter the human genomic landscape across generations. Non-LTR retrotransposons, such as L1 and Alu, are a major source of new microsatellites, which are born both concurrently and subsequently to L1 and Alu integration into the genome. Likewise, the mutation dynamics of microsatellite repeats have a direct impact on the fitness of their non-LTR retrotransposon parent owing to microsatellite expansion and contraction. This review explores the interactions and dynamics between non-LTR retrotransposons and microsatellites in the context of genomic variation and evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA