Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 80(1): 29-42.e10, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32857952

RESUMEN

(p)ppGpp is a nucleotide messenger universally produced in bacteria following nutrient starvation. In E. coli, ppGpp inhibits purine nucleotide synthesis by targeting several different enzymes, but the physiological significance of their inhibition is unknown. Here, we report the structural basis of inhibition for one target, Gsk, the inosine-guanosine kinase. Gsk creates an unprecedented, allosteric binding pocket for ppGpp by restructuring terminal sequences, which restrains conformational dynamics necessary for catalysis. Guided by this structure, we generated a chromosomal mutation that abolishes Gsk regulation by ppGpp. This mutant strain accumulates abnormally high levels of purine nucleotides following amino-acid starvation, compromising cellular fitness. We demonstrate that this unrestricted increase in purine nucleotides is detrimental because it severely depletes pRpp and essential, pRpp-derived metabolites, including UTP, histidine, and tryptophan. Thus, our results reveal the significance of ppGpp's regulation of purine nucleotide synthesis and a critical mechanism by which E. coli coordinates biosynthetic processes during starvation.


Asunto(s)
Aminoácidos/biosíntesis , Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Nucleótidos/biosíntesis , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Retroalimentación Fisiológica , Guanosina Difosfato/metabolismo , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Purinas/biosíntesis , Pirimidinas/biosíntesis
2.
Cell ; 145(1): 67-78, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21458668

RESUMEN

Protein quality control requires careful regulation of intracellular proteolysis. For DegP, a periplasmic protease, substrates promote assembly of inactive hexamers into proteolytically active cages with 12, 18, 24, or 30 subunits. Here, we show that sensitive activation and cage assembly require covalent linkage of distinct substrate sequences that affect degradation (degrons). One degron binds the DegP active site, and another degron binds a separate tethering site in PDZ1 in the crystal structure of a substrate-bound DegP dodecamer. FRET experiments demonstrate that active cages assemble rapidly in a reaction that is positively cooperative in substrate concentration, remain stably assembled while uncleaved substrate is present, and dissociate once degradation is complete. Thus, the energy of binding of linked substrate degrons drives assembly of the proteolytic machine responsible for subsequent degradation. Substrate cleavage and depletion results in disassembly, ensuring that DegP is proteolytically active only when sufficient quantities of protein substrates are present.


Asunto(s)
Escherichia coli/enzimología , Proteínas de Choque Térmico/química , Proteínas Periplasmáticas/química , Proteínas/metabolismo , Serina Endopeptidasas/química , Cristalografía por Rayos X , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Proteínas Periplasmáticas/metabolismo , Unión Proteica , Serina Endopeptidasas/metabolismo
3.
Nature ; 575(7784): 674-678, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31695193

RESUMEN

Bacteria have evolved sophisticated mechanisms to inhibit the growth of competitors1. One such mechanism involves type VI secretion systems, which bacteria can use to inject antibacterial toxins directly into neighbouring cells. Many of these toxins target the integrity of the cell envelope, but the full range of growth inhibitory mechanisms remains unknown2. Here we identify a type VI secretion effector, Tas1, in the opportunistic pathogen Pseudomonas aeruginosa. The crystal structure of Tas1 shows that it is similar to enzymes that synthesize (p)ppGpp, a broadly conserved signalling molecule in bacteria that modulates cell growth rate, particularly in response to nutritional stress3. However, Tas1 does not synthesize (p)ppGpp; instead, it pyrophosphorylates adenosine nucleotides to produce (p)ppApp at rates of nearly 180,000 molecules per minute. Consequently, the delivery of Tas1 into competitor cells drives rapid accumulation of (p)ppApp, depletion of ATP, and widespread dysregulation of essential metabolic pathways, thereby resulting in target cell death. Our findings reveal a previously undescribed mechanism for interbacterial antagonism and demonstrate a physiological role for the metabolite (p)ppApp in bacteria.


Asunto(s)
Nucleótidos de Adenina/biosíntesis , Bacterias/efectos de los fármacos , Bacterias/genética , Toxinas Bacterianas/farmacología , Toxinas Biológicas/toxicidad , Adenosina/metabolismo , Bacterias/enzimología , Bacterias/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Pared Celular/efectos de los fármacos , Cristalización , Escherichia coli/genética , Fosforilación , Pseudomonas aeruginosa , Toxinas Biológicas/genética , Sistemas de Secreción Tipo VI
4.
Mol Microbiol ; 115(6): 1094-1109, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33231899

RESUMEN

Caseinolytic proteases (Clp) are central to bacterial proteolysis and control cellular physiology and stress responses. They are composed of a double-ring compartmentalized peptidase (ClpP) and a AAA+ unfoldase (ClpX or ClpA/ClpC). Unlike many bacteria, the opportunistic pathogen Pseudomonas aeruginosa contains two ClpP homologs: ClpP1 and ClpP2. The specific functions of these homologs, however, are largely elusive. Here, we report that the active form of PaClpP2 is a part of a heteromeric PaClpP17 P27 tetradecamer that is required for proper biofilm development. PaClpP114 and PaClpP17 P27 complexes exhibit distinct peptide cleavage specificities and interact differentially with P. aeruginosa ClpX and ClpA. Crystal structures reveal that PaClpP2 has non-canonical features in its N- and C-terminal regions that explain its poor interaction with unfoldases. However, experiments in vivo indicate that the PaClpP2 peptidase active site uniquely contributes to biofilm development. These data strongly suggest that the specificity of different classes of ClpP peptidase subunits contributes to the biological outcome of proteolysis. This specialized role of PaClpP2 highlights it as an attractive target for developing antimicrobial agents that interfere specifically with late-stage P. aeruginosa development.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Proteolisis , Pseudomonas aeruginosa/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Biopelículas/crecimiento & desarrollo , Cristalografía por Rayos X , Conformación Proteica , Isoformas de Proteínas/genética , Serina Endopeptidasas/genética , Especificidad por Sustrato
5.
Nat Chem Biol ; 15(7): 756, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31076737

RESUMEN

In the version of the article originally published, two sets of labels on the x axis of the graph in Fig. 5b were in reverse order. In the 'PurF' row, the locations of 'N48A' and 'R45A' should be switched, and in the row below those of '4.1' and the minus sign should be switched. Shown below are the original and corrected versions of Fig. 5b. The error has been corrected in the HTML and PDF versions of the article.

6.
Nat Chem Biol ; 15(2): 141-150, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559427

RESUMEN

The nucleotide ppGpp is a highly conserved regulatory molecule in bacteria that helps tune growth rate to nutrient availability. Despite decades of study, how ppGpp regulates growth remains poorly understood. Here, we developed and validated a capture-compound mass spectrometry approach that identified >50 putative ppGpp targets in Escherichia coli. These targets control many key cellular processes and include 13 enzymes required for nucleotide synthesis. We demonstrated that ppGpp inhibits the de novo synthesis of all purine nucleotides by directly targeting the enzyme PurF. By solving a structure of PurF bound to ppGpp, we designed a mutation that ablates ppGpp-based regulation, leading to dysregulation of purine-nucleotide synthesis following ppGpp accumulation. Collectively, our results provide new insights into ppGpp-based growth control and a nearly comprehensive set of targets for future exploration. The capture compounds developed should also enable the rapid identification of ppGpp targets in any species, including pathogens.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Guanosina Pentafosfato/biosíntesis , Guanosina Pentafosfato/fisiología , Amidofosforribosiltransferasa/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Nucleótidos de Guanina/biosíntesis , Nucleótidos de Guanina/fisiología , Guanosina Tetrafosfato , Purinas/antagonistas & inhibidores , Purinas/biosíntesis
7.
Org Biomol Chem ; 19(36): 7843-7854, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34346472

RESUMEN

Targeting protein - protein interactions (PPIs) has emerged as an important area of discovery for anticancer therapeutic development. In the case of phospho-dependent PPIs, such as the polo-like kinase 1 (Plk1) polo-box domain (PBD), a phosphorylated protein residue can provide high-affinity recognition and binding to target protein hot spots. Developing antagonists of the Plk1 PBD can be particularly challenging if one relies solely on interactions within and proximal to the phospho-binding pocket. Fortunately, the affinity of phospho-dependent PPI antagonists can be significantly enhanced by taking advantage of interactions in both the phospho-binding site and hidden "cryptic" pockets that may be revealed on ligand binding. In our current paper, we describe the design and synthesis of macrocyclic peptide mimetics directed against the Plk1 PBD, which are characterized by a new glutamic acid analog that simultaneously serves as a ring-closing junction that provides accesses to a cryptic binding pocket, while at the same time achieving proper orientation of a phosphothreonine (pT) residue for optimal interaction in the signature phospho-binding pocket. Macrocycles prepared with this new amino acid analog introduce additional hydrogen-bonding interactions not found in the open-chain linear parent peptide. It is noteworthy that this new glutamic acid-based amino acid analog represents the first example of extremely high affinity ligands where access to the cryptic pocket from the pT-2 position is made possible with a residue that is not based on histidine. The concepts employed in the design and synthesis of these new macrocyclic peptide mimetics should be useful for further studies directed against the Plk1 PBD and potentially for ligands directed against other PPI targets.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Quinasa Tipo Polo 1
8.
Proc Natl Acad Sci U S A ; 115(5): E886-E895, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339518

RESUMEN

Bcl-2 family proteins regulate apoptosis, and aberrant interactions of overexpressed antiapoptotic family members such as Mcl-1 promote cell transformation, cancer survival, and resistance to chemotherapy. Discovering potent and selective Mcl-1 inhibitors that can relieve apoptotic blockades is thus a high priority for cancer research. An attractive strategy for disabling Mcl-1 involves using designer peptides to competitively engage its binding groove, mimicking the structural mechanism of action of native sensitizer BH3-only proteins. We transformed Mcl-1-binding peptides into α-helical, cell-penetrating constructs that are selectively cytotoxic to Mcl-1-dependent cancer cells. Critical to the design of effective inhibitors was our introduction of an all-hydrocarbon cross-link or "staple" that stabilizes α-helical structure, increases target binding affinity, and independently confers binding specificity for Mcl-1 over related Bcl-2 family paralogs. Two crystal structures of complexes at 1.4 Å and 1.9 Å resolution demonstrate how the hydrophobic staple induces an unanticipated structural rearrangement in Mcl-1 upon binding. Systematic sampling of staple location and iterative optimization of peptide sequence in accordance with established design principles provided peptides that target intracellular Mcl-1. This work provides proof of concept for the development of potent, selective, and cell-permeable stapled peptides for therapeutic targeting of Mcl-1 in cancer, applying a design and validation workflow applicable to a host of challenging biomedical targets.


Asunto(s)
Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias/metabolismo , Péptidos/química , Animales , Sitios de Unión , Línea Celular , Supervivencia Celular , Dicroismo Circular , Cristalografía por Rayos X , Citoplasma/metabolismo , Diseño de Fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Ratones , Mutación , Unión Proteica , Mapeo de Interacción de Proteínas , Espectrometría de Fluorescencia
9.
Mol Cell ; 43(2): 217-28, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21777811

RESUMEN

The ClpS adaptor delivers N-end rule substrates to ClpAP, an energy-dependent AAA+ protease, for degradation. How ClpS binds specific N-end residues is known in atomic detail and clarified here, but the delivery mechanism is poorly understood. We show that substrate binding is enhanced when ClpS binds hexameric ClpA. Reciprocally, N-end rule substrates increase ClpS affinity for ClpA(6). Enhanced binding requires the N-end residue and a peptide bond of the substrate, as well as multiple aspects of ClpS, including a side chain that contacts the substrate α-amino group and the flexible N-terminal extension (NTE). Finally, enhancement also needs the N domain and AAA+ rings of ClpA, connected by a long linker. The NTE can be engaged by the ClpA translocation pore, but ClpS resists unfolding/degradation. We propose a staged-delivery model that illustrates how intimate contacts between the substrate, adaptor, and protease reprogram specificity and coordinate handoff from the adaptor to the protease.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Escherichia coli/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Endopeptidasa Clp/química , Endopeptidasa Clp/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Datos de Secuencia Molecular , Sensibilidad y Especificidad , Especificidad por Sustrato
10.
J Biol Chem ; 292(14): 5695-5704, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28223361

RESUMEN

The HslUV proteolytic machine consists of HslV, a double-ring self-compartmentalized peptidase, and one or two AAA+ HslU ring hexamers that hydrolyze ATP to power the unfolding of protein substrates and their translocation into the proteolytic chamber of HslV. Here, we use genetic tethering and disulfide bonding strategies to construct HslU pseudohexamers containing mixtures of ATPase active and inactive subunits at defined positions in the hexameric ring. Genetic tethering impairs HslV binding and degradation, even for pseudohexamers with six active subunits, but disulfide-linked pseudohexamers do not have these defects, indicating that the peptide tether interferes with HslV interactions. Importantly, pseudohexamers containing different patterns of hydrolytically active and inactive subunits retain the ability to unfold protein substrates and/or collaborate with HslV in their degradation, supporting a model in which ATP hydrolysis and linked mechanical function in the HslU ring operate by a probabilistic mechanism.


Asunto(s)
Adenosina Trifosfato/química , Endopeptidasa Clp/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Desplegamiento Proteico , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Dominio Catalítico , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
11.
Bioorg Med Chem Lett ; 28(19): 3202-3205, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30174151

RESUMEN

Transition toward peptide mimetics of reduced size is an important objective of peptide macrocyclization. We have previously shown that PLH∗SpT (2a) (where H∗ indicates the presence of a -(CH2)8Ph group at the N(π) position and pT indicates phosphothreonine) is an extremely high affinity ligand of the polo-like kinase 1 (Plk1) polo-box domain (PBD). Herein we report that C-terminal macrocyclization of 2a employing N(π),N(τ)-bis-alkylated His residues as ring junctions can be achieved in a very direct fashion. The resulting macrocycles are highly potent in biochemical assays and maintain good target selectivity for the Plk1 PBD versus the PBDs of Plk2 and Plk3. Importantly, as exemplified by 5d, our current approach permits deletion of the N-terminal "Pro-Leu" motif to yield tripeptide ligands with decreased molecular weight, which retain high affinity and show improved target selectivity. These findings could fundamentally impact the future development of peptide macrocycles in general and Plk1 PBD-binding peptide mimetics in particular.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Histidina/química , Compuestos Macrocíclicos/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Ciclización , Ensayo de Inmunoadsorción Enzimática , Quinasa Tipo Polo 1
12.
Mol Cell ; 32(3): 406-14, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18995838

RESUMEN

The N-end rule targets specific proteins for destruction in prokaryotes and eukaryotes. Here, we report a crystal structure of a bacterial N-end rule adaptor, ClpS, bound to a peptide mimic of an N-end rule substrate. This structure, which was solved at a resolution of 1.15 A, reveals specific recognition of the peptide alpha-amino group via hydrogen bonding and shows that the peptide's N-terminal tyrosine side chain is buried in a deep hydrophobic cleft that pre-exists on the surface of ClpS. The adaptor side chains that contact the peptide's N-terminal residue are highly conserved in orthologs and in E3 ubiquitin ligases that mediate eukaryotic N-end rule recognition. We show that mutation of critical ClpS contact residues abrogates substrate delivery to and degradation by the AAA+ protease ClpAP, demonstrate that modification of the hydrophobic pocket results in altered N-end rule specificity, and discuss functional implications for the mechanism of substrate delivery.


Asunto(s)
Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Bacterias/química , Bacterias/metabolismo , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Células Eucariotas/química , Células Eucariotas/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Sensibilidad y Especificidad , Tirosina/química
13.
Sci Adv ; 10(16): eadl6144, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640233

RESUMEN

Nucleoprotein (NP) is a key structural protein of influenza ribonucleoprotein complexes and is central to viral RNA packing and trafficking. NP also determines the sensitivity of influenza to myxovirus resistance protein 1 (MxA), an innate immunity factor that restricts influenza replication. A few critical MxA-resistant mutations have been identified in NP, including the highly conserved proline-283 substitution. This essential proline-283 substitution impairs influenza growth, a fitness defect that becomes particularly prominent at febrile temperature (39°C) when host chaperones are depleted. Here, we biophysically characterize proline-283 NP and serine-283 NP to test whether the fitness defect is caused by the proline-283 substitution introducing folding defects. We show that the proline-283 substitution changes the folding pathway of NP, making NP more aggregation prone during folding, but does not alter the native structure of the protein. These findings suggest that influenza has evolved to hijack host chaperones to promote the folding of otherwise biophysically incompetent viral proteins that enable innate immune system escape.


Asunto(s)
Gripe Humana , Humanos , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de la Nucleocápside/metabolismo , Proteínas de Resistencia a Mixovirus
14.
Regen Med ; 18(2): 113-121, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36541936

RESUMEN

Aim: Osteoarthritis (OA) prevalence is increased in ageing and obese populations. This prospective single-arm cohort study aimed to investigate the efficacy of autologous microfragmented adipose tissue treatment of severe knee or shoulder OA. Materials & methods: Participants received an intra-articular microfragmented adipose tissue injection to the affected joint(s). Multiple patient reported outcome measures (PROMS) were recorded from 0 to 52 weeks for 63 consecutive joints. Results: Compared with baseline, there were significant improvements in all PROMS from 2 to 12 weeks and maintained at 52 weeks. Regression analysis revealed an inverse correlation with BMI and change in PROMS for knee joints. Conclusion: Our observed findings suggest this approach represents a safe, effective treatment for moderate-to-severe knee and shoulder OA, although efficacy may be reduced with increasing obesity.


Swelling and pain in the joints is common and found more often in older and overweight people. Osteoarthritis causes swelling and pain in joints because of a loss of tough, flexible tissue called cartilage. This study looks to see if injection of fat tissue into knee or shoulder joints can improve symptoms. The fat tissue used was called microfragmented adipose tissue (MFAT). This uses a technique to break down the fat tissue before injection. These cells were from the patient's own body. All patients had an injection of MFAT into their painful joints. In total, 59 patients took part. Reports were directly collected from the patient of how well they were doing. This was done before and after the injection at weeks 2, 6, 12, 24 and 52. There were three different types of report collected for knee joints and three for shoulder joints. Scores were then compared from these reports to see if there was a difference. An improvement was found in all three of the combined reports for both knees and shoulders. This stayed until 52 weeks. BMI is a measure of body weight in relation to height. Patients with a higher BMI were found to have had a smaller improvement in their scores. This study shows MFAT injections are safe and effective in treating painful joints.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/terapia , Estudios de Cohortes , Estudios Prospectivos , Tejido Adiposo , Articulación de la Rodilla , Resultado del Tratamiento , Inyecciones Intraarticulares
15.
Structure ; 31(3): 265-281.e7, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36706751

RESUMEN

Apoptosis is important for development and tissue homeostasis, and its dysregulation can lead to diseases, including cancer. As an apoptotic effector, BAK undergoes conformational changes that promote mitochondrial outer membrane disruption, leading to cell death. This is termed "activation" and can be induced by peptides from the human proteins BID, BIM, and PUMA. To identify additional peptides that can regulate BAK, we used computational protein design, yeast surface display screening, and structure-based energy scoring to identify 10 diverse new binders. We discovered peptides from the human proteins BNIP5 and PXT1 and three non-native peptides that activate BAK in liposome assays and induce cytochrome c release from mitochondria. Crystal structures and binding studies reveal a high degree of similarity among peptide activators and inhibitors, ruling out a simple function-determining property. Our results shed light on the vast peptide sequence space that can regulate BAK function and will guide the design of BAK-modulating tools and therapeutics.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Proteínas Proto-Oncogénicas , Humanos , Proteínas Proto-Oncogénicas/química , Proteínas Reguladoras de la Apoptosis/química , Proteína 11 Similar a Bcl2 , Proteína bcl-X/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Apoptosis/fisiología , Péptidos , Proteína X Asociada a bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/química
16.
bioRxiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37745335

RESUMEN

Nucleoprotein (NP) is a key structural protein of influenza ribonucleoprotein complexes and is central to viral RNA packing and trafficking. In human cells, the interferon induced Myxovirus resistance protein 1 (MxA) binds to NP and restricts influenza replication. This selection pressure has caused NP to evolve a few critical MxA-resistant mutations, particularly the highly conserved Pro283 substitution. Previous work showed that this essential Pro283 substitution impairs influenza growth, and the fitness defect becomes particularly prominent at febrile temperature (39 °C) when host chaperones are depleted. Here, we biophysically characterize Pro283 NP and Ser283 NP to test if the fitness defect is owing to Pro283 substitution introducing folding defects. We show that the Pro283 substitution changes the folding pathway of NP without altering the native structure, making NP more aggregation prone during folding. These findings suggest that influenza has evolved to hijack host chaperones to promote the folding of otherwise biophysically incompetent viral proteins that enable innate immune system escape. Teaser: Pro283 substitution in flu nucleoprotein introduces folding defects, and makes influenza uniquely dependent on host chaperones.

17.
Proc Natl Acad Sci U S A ; 106(22): 8888-93, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19451643

RESUMEN

The N-end rule is a conserved degradation pathway that relates the stability of a protein to its N-terminal amino acid. Here, we present crystal structures of ClpS, the bacterial N-end rule adaptor, alone and engaged with peptides containing N-terminal phenylalanine, leucine, and tryptophan. These structures, together with a previous structure of ClpS bound to an N-terminal tyrosine, illustrate the molecular basis of recognition of the complete set of primary N-end rule amino acids. In each case, the alpha-amino group and side chain of the N-terminal residue are the major determinants of recognition. The binding pocket for the N-end residue is preformed in the free adaptor, and only small adjustments are needed to accommodate N-end rule residues having substantially different sizes and shapes. M53A ClpS is known to mediate degradation of an expanded repertoire of substrates, including those with N-terminal valine or isoleucine. A structure of Met53A ClpS engaged with an N-end rule tryptophan reveals an essentially wild-type mechanism of recognition, indicating that the Met(53) side chain directly enforces specificity by clashing with and excluding beta-branched side chains. Finally, experimental and structural data suggest mechanisms that make proteins with N-terminal methionine bind very poorly to ClpS, explaining why these high-abundance proteins are not degraded via the N-end rule pathway in the cell.


Asunto(s)
Proteínas Portadoras/metabolismo , Caulobacter crescentus/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cristalografía por Rayos X , Endopeptidasa Clp/metabolismo , Metionina/genética , Metionina/metabolismo , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Conformación Proteica , Especificidad por Sustrato
18.
Elife ; 112022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35076015

RESUMEN

The human proteome is replete with short linear motifs (SLiMs) of four to six residues that are critical for protein-protein interactions, yet the importance of the sequence surrounding such motifs is underexplored. We devised a proteomic screen to examine the influence of SLiM sequence context on protein-protein interactions. Focusing on the EVH1 domain of human ENAH, an actin regulator that is highly expressed in invasive cancers, we screened 36-residue proteome-derived peptides and discovered new interaction partners of ENAH and diverse mechanisms by which context influences binding. A pocket on the ENAH EVH1 domain that has diverged from other Ena/VASP paralogs recognizes extended SLiMs and favors motif-flanking proline residues. Many high-affinity ENAH binders that contain two proline-rich SLiMs use a noncanonical site on the EVH1 domain for binding and display a thermodynamic signature consistent with the two-motif chain engaging a single domain. We also found that photoreceptor cilium actin regulator (PCARE) uses an extended 23-residue region to obtain a higher affinity than any known ENAH EVH1-binding motif. Our screen provides a way to uncover the effects of proteomic context on motif-mediated binding, revealing diverse mechanisms of control over EVH1 interactions and establishing that SLiMs can't be fully understood outside of their native context.


Asunto(s)
Actinas/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Proteínas de Microfilamentos/metabolismo , Prolina/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células HEK293 , Humanos , Proteómica
19.
J Biol Chem ; 285(44): 34039-47, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-20739286

RESUMEN

DegS is a periplasmic Escherichia coli protease, which functions as a trimer to catalyze the initial rate-limiting step in a proteolytic cascade that ultimately activates transcription of stress response genes in the cytoplasm. Each DegS subunit consists of a protease domain and a PDZ domain. During protein folding stress, DegS is allosterically activated by peptides exposed in misfolded outer membrane porins, which bind to the PDZ domain and stabilize the active protease. It is not known whether allostery is conferred by the PDZ domains or is an intrinsic feature of the trimeric protease domain. Here, we demonstrate that free DegS(ΔPDZ) equilibrates between active and inactive trimers with the latter species predominating. Substrate binding stabilizes active DegS(ΔPDZ) in a positively cooperative fashion. Mutations can also stabilize active DegS(ΔPDZ) and produce an enzyme that displays hyperbolic kinetics and degrades substrate with a maximal velocity within error of that for fully activated, intact DegS. Crystal structures of multiple DegS(ΔPDZ) variants, in functional and non-functional conformations, support a two-state model in which allosteric switching is mediated by changes in specific elements of tertiary structure in the context of an invariant trimeric base. Overall, our results indicate that protein substrates must bind sufficiently tightly and specifically to the functional conformation of DegS(ΔPDZ) to assist their own degradation. Thus, substrate binding alone may have regulated the activities of ancestral DegS trimers with subsequent fusion of the protease domain to a PDZ domain, resulting in ligand-mediated regulation.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Sitio Alostérico , Proteínas Bacterianas/química , Cristalografía por Rayos X/métodos , Dimerización , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Enlace de Hidrógeno , Cinética , Mutación , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína
20.
Cell Rep ; 34(3): 108639, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33472065

RESUMEN

At low temperatures, protein degradation by the AAA+ HslUV protease is very slow. New crystal structures reveal that residues in the intermediate domain of the HslU6 unfoldase can plug its axial channel, blocking productive substrate binding and subsequent unfolding, translocation, and degradation by the HslV12 peptidase. Biochemical experiments with wild-type and mutant enzymes support a model in which heat-induced melting of this autoinhibitory plug activates HslUV proteolysis.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Calor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA