Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Faraday Discuss ; 232(0): 114-130, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34549736

RESUMEN

Intrinsic apoptosis is orchestrated by a group of proteins that mediate the coordinated disruption of mitochondrial membranes. Bax is a multi-domain protein that, upon activation, disrupts the integrity of the mitochondrial outer membrane by forming pores. We strategically introduced glutamic acids into a short sequence of the Bax protein that constitutively creates membrane pores. The resulting BaxE5 peptide efficiently permeabilizes membranes at acidic pH, showing low permeabilization at neutral pH. Atomic force microscopy (AFM) imaging showed that at acidic pH BaxE5 established several membrane remodeling modalities that progressively disturbed the integrity of the lipid bilayer. The AFM data offers vistas on the membrane disruption process, which starts with pore formation and progresses through localized exposure of membrane monolayers leading to stable and small (height ∼ 16 Å) lipid-peptide complexes. The different types of membrane morphology observed in the presence of BaxE5 suggest that the peptide can establish different types of membrane interactions. BaxE5 adopts a rare unstructured conformation when bound to membranes, which might facilitate the dynamic transition between those different states, and then promote membrane digestion.


Asunto(s)
Membrana Dobles de Lípidos , Membranas Mitocondriales , Apoptosis , Microscopía de Fuerza Atómica , Proteína X Asociada a bcl-2
2.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884581

RESUMEN

In eukaryotic cells, the endoplasmic reticulum (ER) is the entry point for newly synthesized proteins that are subsequently distributed to organelles of the endomembrane system. Some of these proteins are completely translocated into the lumen of the ER while others integrate stretches of amino acids into the greasy 30 Å wide interior of the ER membrane bilayer. It is generally accepted that to exist in this non-aqueous environment the majority of membrane integrated amino acids are primarily non-polar/hydrophobic and adopt an α-helical conformation. These stretches are typically around 20 amino acids long and are known as transmembrane (TM) helices. In this review, we will consider how transmembrane helices achieve membrane integration. We will address questions such as: Where do the stretches of amino acids fold into a helical conformation? What is/are the route/routes that these stretches take from synthesis at the ribosome to integration through the ER translocon? How do these stretches 'know' to integrate and in which orientation? How do marginally hydrophobic stretches of amino acids integrate and survive as transmembrane helices?


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Pliegue de Proteína , Animales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica en Hélice alfa
3.
Biochim Biophys Acta Biomembr ; 1859(5): 903-909, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28132902

RESUMEN

Translocon-associated protein (TRAP) complex is intimately associated with the ER translocon for the insertion or translocation of newly synthesised proteins in eukaryotic cells. The TRAP complex is comprised of three single-spanning and one multiple-spanning subunits. We have investigated the membrane insertion and topology of the multiple-spanning TRAP-γ subunit by glycosylation mapping and green fluorescent protein fusions both in vitro and in cell cultures. Results demonstrate that TRAP-γ has four transmembrane (TM) segments, an Nt/Ct cytosolic orientation and that the less hydrophobic TM segment inserts efficiently into the membrane only in the cellular context of full-length protein.


Asunto(s)
Proteínas de Unión al Calcio/química , Glicoproteínas de Membrana/química , Proteínas de la Membrana/química , Receptores Citoplasmáticos y Nucleares/química , Receptores de Péptidos/química , Retículo Endoplásmico/química , Interacciones Hidrofóbicas e Hidrofílicas , Subunidades de Proteína
4.
Sci Rep ; 14(1): 11896, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789475

RESUMEN

The immune effector mechanisms involved in protecting against severe COVID-19 infection in elderly nursing home residents following vaccination or natural infection are not well understood. Here, we measured SARS-CoV-2 Spike (S)-directed functional antibody responses, including neutralizing antibodies (NtAb) and antibody Fc-mediated NK cell activity (degranulation and IFNγ production), against the Wuhan-Hu-1, BA.4/5 (for NtAb), and Omicron XBB.1.5 variants in elderly nursing home residents (n = 39; median age, 91 years) before and following a third (pre- and post-3D) and a fourth (pre- and post-4D) mRNA COVID-19 vaccine dose. Both 3D and 4D boosted NtAb levels against both (sub)variants. Likewise, 3D and 4D increased the ability of sera to trigger both LAMP1- and IFNγ-producing NK cells, in particular against XBB.1.5. In contrast to NtAb titres, the frequencies of LAMP1- and IFNγ-producing NK cells activated by antibodies binding to Wuhan-Hu-1 and Omicron XBB.1.5 S were comparable at all testing times. Stronger functional antibody responses were observed in vaccine-experienced participants compared to vaccine-naïve at some testing times. These findings can contribute to identifying a reliable correlate of protection in elderly nursing home residents against severe COVID-19 and inform future vaccine strategies in this population group.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Casas de Salud , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Anciano de 80 o más Años , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , SARS-CoV-2/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Femenino , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Masculino , Inmunización Secundaria , Células Asesinas Naturales/inmunología , Anciano , Vacunación/métodos , Formación de Anticuerpos/inmunología
5.
Biochim Biophys Acta Biomembr ; 1863(12): 183712, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34331948

RESUMEN

The study of protein-protein interactions (PPI) has proven fundamental for the understanding of the most relevant cell processes. Any protein domain can participate in PPI, including transmembrane (TM) segments that can establish interactions with other TM domains (TMDs). However, the hydrophobic nature of TMDs and the environment they occupy complicates the study of intramembrane PPI, which demands the use of specific approaches and techniques. In this review, we will explore some of the strategies available to study intramembrane PPI in vitro, in vivo, and, in silico, focusing on those techniques that could be carried out in a standard molecular biology laboratory regarding its previous experience with membrane proteins.


Asunto(s)
Proteínas de la Membrana/genética , Dominios Proteicos/genética , Mapas de Interacción de Proteínas/genética , Bacterias/genética , Comunicación Celular/genética , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Pliegue de Proteína
6.
J Mol Biol ; 433(18): 167144, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34229012

RESUMEN

The EphA2 receptor is a promising drug target for cancer treatment, since EphA2 activation can inhibit metastasis and tumor progression. It has been recently described that the TYPE7 peptide activates EphA2 using a novel mechanism that involves binding to the single transmembrane domain of the receptor. TYPE7 is a conditional transmembrane (TM) ligand, which only inserts into membranes at neutral pH in the presence of the TM region of EphA2. However, how membrane interactions can activate EphA2 is not known. We systematically altered the sequence of TYPE7 to identify the binding motif used to activate EphA2. With the resulting six peptides, we performed biophysical and cell migration assays that identified a new potent peptide variant. We also performed a mutational screen that determined the helical interface that mediates dimerization of the TM domain of EphA2 in cells. These results, together with molecular dynamic simulations, allowed to elucidate the molecular mechanism that TYPE7 uses to activate EphA2, where the membrane peptide acts as a molecular clamp that wraps around the TM dimer of the receptor. We propose that this binding mode stabilizes the active conformation of EphA2. Our data, additionally, provide clues into the properties that TM ligands need to have in order to achieve activation of membrane receptors.


Asunto(s)
Melanoma/patología , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Receptor EphA2/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Movimiento Celular , Humanos , Ligandos , Melanoma/metabolismo , Proteínas de la Membrana/química , Membranas/química , Simulación de Dinámica Molecular , Fragmentos de Péptidos/química , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Receptor EphA2/química , Homología de Secuencia , Células Tumorales Cultivadas
7.
Open Biol ; 10(9): 200209, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32898469

RESUMEN

Coronavirus E protein is a small membrane protein found in the virus envelope. Different coronavirus E proteins share striking biochemical and functional similarities, but sequence conservation is limited. In this report, we studied the E protein topology from the new SARS-CoV-2 virus both in microsomal membranes and in mammalian cells. Experimental data reveal that E protein is a single-spanning membrane protein with the N-terminus being translocated across the membrane, while the C-terminus is exposed to the cytoplasmic side (Ntlum/Ctcyt). The defined membrane protein topology of SARS-CoV-2 E protein may provide a useful framework to understand its interaction with other viral and host components and contribute to establish the basis to tackle the pathogenesis of SARS-CoV-2.


Asunto(s)
Betacoronavirus/metabolismo , Eucariontes/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Secuencia de Aminoácidos , Betacoronavirus/aislamiento & purificación , COVID-19 , Membrana Celular/metabolismo , Proteínas de la Envoltura de Coronavirus , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Eucariontes/citología , Humanos , Microsomas/metabolismo , Mutación , Pandemias , Filogenia , Neumonía Viral/patología , Neumonía Viral/virología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , SARS-CoV-2 , Alineación de Secuencia , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/clasificación , Proteínas del Envoltorio Viral/genética
8.
Nat Commun ; 11(1): 6056, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247105

RESUMEN

Viral control of programmed cell death relies in part on the expression of viral analogs of the B-cell lymphoma 2 (Bcl2) protein known as viral Bcl2s (vBcl2s). vBcl2s control apoptosis by interacting with host pro- and anti-apoptotic members of the Bcl2 family. Here, we show that the carboxyl-terminal hydrophobic region of herpesviral and poxviral vBcl2s can operate as transmembrane domains (TMDs) and participate in their homo-oligomerization. Additionally, we show that the viral TMDs mediate interactions with cellular pro- and anti-apoptotic Bcl2 TMDs within the membrane. Furthermore, these intra-membrane interactions among viral and cellular proteins are necessary to control cell death upon an apoptotic stimulus. Therefore, their inhibition represents a new potential therapy against viral infections, which are characterized by short- and long-term deregulation of programmed cell death.


Asunto(s)
Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Doxorrubicina/farmacología , Fluorescencia , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/química
9.
Nat Commun ; 9(1): 5246, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30531789

RESUMEN

Integral membrane proteins are assembled into the ER membrane via a continuous ribosome-translocon channel. The hydrophobicity and thickness of the core of the membrane bilayer leads to the expectation that transmembrane (TM) segments minimize the cost of harbouring polar polypeptide backbones by adopting a regular pattern of hydrogen bonds to form α-helices before integration. Co-translational folding of nascent chains into an α-helical conformation in the ribosomal tunnel has been demonstrated previously, but the features governing this folding are not well understood. In particular, little is known about what features influence the propensity to acquire α-helical structure in the ribosome. Using in vitro translation of truncated nascent chains trapped within the ribosome tunnel and molecular dynamics simulations, we show that folding in the ribosome is attained for TM helices but not for soluble helices, presumably facilitating SRP (signal recognition particle) recognition and/or a favourable conformation for membrane integration upon translocon entry.


Asunto(s)
Proteínas de la Membrana/química , Pliegue de Proteína , Estructura Secundaria de Proteína , Ribosomas/química , Secuencia de Aminoácidos , Animales , Retículo Endoplásmico/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Ribosomas/metabolismo , Homología de Secuencia de Aminoácido , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo
10.
Cell Stress ; 1(2): 90-106, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-31225439

RESUMEN

Folding and packing of membrane proteins are highly influenced by the lipidic component of the membrane. Here, we explore how the hydrophobic mismatch (the difference between the hydrophobic span of a transmembrane protein region and the hydrophobic thickness of the lipid membrane around the protein) influences transmembrane helix packing in a cellular environment. Using a ToxRED assay in Escherichia coli and a Bimolecular Fluorescent Complementation approach in human-derived cells complemented by atomistic molecular dynamics simulations we analyzed the dimerization of Glycophorin A derived transmembrane segments. We concluded that, biological membranes can accommodate transmembrane homo-dimers with a wide range of hydrophobic lengths. Hydrophobic mismatch and its effects on dimerization are found to be considerably weaker than those previously observed in model membranes, or under in vitro conditions, indicating that biological membranes (particularly eukaryotic membranes) can adapt to structural deformations through compensatory mechanisms that emerge from their complex structure and composition to alleviate membrane stress. Results based on atomistic simulations support this view, as they revealed that Glycophorin A dimers remain stable, despite of poor hydrophobic match, using mechanisms based on dimer tilting or local membrane thickness perturbations. Furthermore, hetero-dimers with large length disparity between their monomers are also tolerated in cells, and the conclusions that one can draw are essentially similar to those found with homo-dimers. However, large differences between transmembrane helices length hinder the monomer/dimer equilibrium, confirming that, the hydrophobic mismatch has, nonetheless, biologically relevant effects on helix packing in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA