Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
FASEB J ; 38(10): e23692, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38786655

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection involves an initial viral infection phase followed by a host-response phase that includes an eicosanoid and cytokine storm, lung inflammation and respiratory failure. While vaccination and early anti-viral therapies are effective in preventing or limiting the pathogenic host response, this latter phase is poorly understood with no highly effective treatment options. Inhibitors of soluble epoxide hydrolase (sEH) increase levels of anti-inflammatory molecules called epoxyeicosatrienoic acids (EETs). This study aimed to investigate the impact of sEH inhibition on the host response to SARS-CoV-2 infection in a mouse model with human angiotensin-converting enzyme 2 (ACE2) expression. Mice were infected with SARS-CoV-2 and treated with either vehicle or the sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU). At day 5 post-infection, SARS-CoV-2 induced weight loss, clinical signs, a cytokine storm, an eicosanoid storm, and severe lung inflammation with ~50% mortality on days 6-8 post-infection. SARS-CoV-2 infection induced lung expression of phospholipase A2 (PLA2), cyclooxygenase (COX) and lipoxygenase (LOX) pathway genes, while suppressing expression of most cytochrome P450 genes. Treatment with the sEH inhibitor TPPU delayed weight loss but did not alter clinical signs, lung cytokine expression or overall survival of infected mice. Interestingly, TPPU treatment significantly reversed the eicosanoid storm and attenuated viral-induced elevation of 39 fatty acids and oxylipins from COX, LOX and P450 pathways, which suggests the effects at the level of PLA2 activation. The suppression of the eicosanoid storm by TPPU without corresponding changes in lung cytokines, lung inflammation or mortality reveals a surprising dissociation between systemic oxylipin and cytokine signaling pathways during SARS-CoV-2 infection and suggests that the cytokine storm is primarily responsible for morbidity and mortality in this animal model.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Síndrome de Liberación de Citoquinas , Eicosanoides , Epóxido Hidrolasas , SARS-CoV-2 , Animales , Ratones , Eicosanoides/metabolismo , COVID-19/inmunología , COVID-19/virología , COVID-19/metabolismo , SARS-CoV-2/efectos de los fármacos , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Piperidinas/farmacología , Piperidinas/uso terapéutico , Citocinas/metabolismo , Humanos , Pulmón/virología , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/metabolismo , Modelos Animales de Enfermedad , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Femenino
2.
J Biol Chem ; 299(4): 103049, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36822325

RESUMEN

Cytochromes P450 metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) which have numerous effects. After cardiac ischemia, EET-induced coronary vasodilation increases delivery of oxygen/nutrients to the myocardium, and EET-induced signaling protects cardiomyocytes against postischemic mitochondrial damage. Soluble epoxide hydrolase 2 (EPHX2) diminishes the benefits of EETs through hydrolysis to less active dihydroxyeicosatrienoic acids. EPHX2 inhibition or genetic disruption improves recovery of cardiac function after ischemia. Immunohistochemical staining revealed EPHX2 expression in cardiomyocytes and some endothelial cells but little expression in cardiac smooth muscle cells or fibroblasts. To determine specific roles of EPHX2 in cardiac cell types, we generated mice with cell-specific disruption of Ephx2 in endothelial cells (Ephx2fx/fx/Tek-cre) or cardiomyocytes (Ephx2fx/fx/Myh6-cre) to compare to global Ephx2-deficient mice (global Ephx2-/-) and WT (Ephx2fx/fx) mice in expression, EET hydrolase activity, and heart function studies. Most cardiac EPHX2 expression and activity is in cardiomyocytes with substantially less activity in endothelial cells. Ephx2fx/fx/Tek-cre hearts have similar EPHX2 expression, hydrolase activity, and postischemic cardiac function as control Ephx2fx/fx hearts. However, Ephx2fx/fx/Myh6-cre hearts were similar to global Ephx2-/- hearts with significantly diminished EPHX2 expression, decreased hydrolase activity, and enhanced postischemic cardiac function compared to Ephx2fx/fx hearts. During reperfusion, Ephx2fx/fx/Myh6-cre hearts displayed increased ERK activation compared to Ephx2fx/fx hearts, which could be reversed by EEZE treatment. EPHX2 did not regulate coronary vasodilation in this model. We conclude that EPHX2 is primarily expressed in cardiomyocytes where it regulates EET hydrolysis and postischemic cardiac function, whereas endothelial EPHX2 does not play a significant role in these processes.


Asunto(s)
Miocardio , Miocitos Cardíacos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Miocardio/metabolismo , Isquemia/metabolismo , Eicosanoides/metabolismo , Reperfusión , Hidrolasas/metabolismo , Epóxido Hidrolasas/metabolismo
3.
FASEB J ; 37(7): e23009, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37273180

RESUMEN

Human and animal studies support that consuming a high level of linoleic acid (LA, 18:2ω-6), an essential fatty acid and key component of the human diet, increases the risk of colon cancer. However, results from human studies have been inconsistent, making it challenging to establish dietary recommendations for optimal LA intake. Given the importance of LA in the human diet, it is crucial to better understand the molecular mechanisms underlying its potential colon cancer-promoting effects. Using LC-MS/MS-based targeted lipidomics, we find that the cytochrome P450 (CYP) monooxygenase pathway is a major pathway for LA metabolism in vivo. Furthermore, CYP monooxygenase is required for the colon cancer-promoting effects of LA, since the LA-rich diet fails to exacerbate colon cancer in CYP monooxygenase-deficient mice. Finally, CYP monooxygenase mediates the pro-cancer effects of LA by converting LA to epoxy octadecenoic acids (EpOMEs), which have potent effects on promoting colon tumorigenesis via gut microbiota-dependent mechanisms. Overall, these results support that CYP monooxygenase-mediated conversion of LA to EpOMEs plays a crucial role in the health effects of LA, establishing a unique mechanistic link between dietary fatty acid intake and cancer risk. These results could help in developing more effective dietary guidelines for optimal LA intake and identifying subpopulations that may be especially vulnerable to LA's negative effects.


Asunto(s)
Neoplasias del Colon , Ácido Linoleico , Humanos , Ratones , Animales , Ácido Linoleico/farmacología , Ácido Linoleico/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Eicosanoides , Sistema Enzimático del Citocromo P-450/metabolismo , Dieta , Neoplasias del Colon/etiología
4.
J Biol Chem ; 296: 100198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33334892

RESUMEN

The mammalian epoxide hydrolase (EPHX)3 is known from in vitro experiments to efficiently hydrolyze the linoleate epoxides 9,10-epoxyoctadecamonoenoic acid (EpOME) and epoxyalcohol 9R,10R-trans-epoxy-11E-13R-hydroxy-octadecenoate to corresponding diols and triols, respectively. Herein we examined the physiological relevance of EPHX3 to hydrolysis of both substrates in vivo. Ephx3-/- mice show no deficiency in EpOME-derived plasma diols, discounting a role for EPHX3 in their formation, whereas epoxyalcohol-derived triols esterified in acylceramides of the epidermal 12R-lipoxygenase pathway are reduced. Although the Ephx3-/- pups appear normal, measurements of transepidermal water loss detected a modest and statistically significant increase compared with the wild-type or heterozygote mice, reflecting a skin barrier impairment that was not evident in the knockouts of mouse microsomal (EPHX1/microsomal epoxide hydrolase) or soluble (EPHX2/sEH). This barrier phenotype in the Ephx3-/- pups was associated with a significant decrease in the covalently bound ceramides in the epidermis (40% reduction, p < 0.05), indicating a corresponding structural impairment in the integrity of the water barrier. Quantitative LC-MS analysis of the esterified linoleate-derived triols in the murine epidermis revealed a marked and isomer-specific reduction (∼85%) in the Ephx3-/- epidermis of the major trihydroxy isomer 9R,10S,13R-trihydroxy-11E-octadecenoate. We conclude that EPHX3 (and not EPHX1 or EPHX2) catalyzes hydrolysis of the 12R-LOX/eLOX3-derived epoxyalcohol esterified in acylceramide and may function to control flux through the alternative and crucial route of metabolism via the dehydrogenation pathway of SDR9C7. Importantly, our findings also identify a functional role for EPHX3 in transformation of a naturally esterified epoxide substrate, pointing to its potential contribution in other tissues.


Asunto(s)
Ceramidas/metabolismo , Compuestos Epoxi/metabolismo , Ácido Linoleico/metabolismo , Piel/metabolismo , Animales , Eliminación de Gen , Hidrólisis , Ratones , Permeabilidad
5.
FASEB J ; 33(12): 14784-14797, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31690125

RESUMEN

Inflammatory stimuli, such as bacterial LPS, alter the expression of many cytochromes P450. CYP2C and CYP2J subfamily members actively metabolize fatty acids to bioactive eicosanoids, which exhibit potent anti-inflammatory effects. Herein, we examined mRNA levels of the 15 mouse Cyp2c and 7 mouse Cyp2j isoforms in liver, kidney, duodenum, and brain over a 96-h time course of LPS-induced inflammation and resolution. Plasma and liver eicosanoid levels were also measured by liquid chromatography with tandem mass spectrometry. Expression changes in Cyp2c and Cyp2j isoforms were both isoform and tissue specific. Total liver Cyp2c and Cyp2j mRNA content was reduced by 80% 24 h after LPS but recovered to baseline levels by 96 h. Total Cyp2c and Cyp2j mRNA in kidney (-19%) and duodenum (-64%) were reduced 24 h after LPS but recovered above baseline by 72 h. Total Cyp2c and Cyp2j mRNA content in brain was elevated at all time points after LPS dosing. Plasma eicosanoids transiently increased 3-6 h after administration of LPS. In liver, esterified oxylipin levels decreased during acute inflammation and before recovering. The biphasic suppression and recovery of mouse Cyp2c and Cyp2j isoforms and associated changes in eicosanoid levels during LPS-induced inflammation and resolution may have important physiologic consequences.-Graves, J. P., Bradbury, J. A., Gruzdev, A., Li, H., Duval, C., Lih, F. B., Edin, M. L., Zeldin, D. C. Expression of Cyp2c/Cyp2j subfamily members and oxylipin levels during LPS-induced inflammation and resolution in mice.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Lipopolisacáridos/toxicidad , Oxilipinas/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Duodeno/efectos de los fármacos , Duodeno/metabolismo , Eicosanoides/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
6.
J Biol Chem ; 293(9): 3281-3292, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29298899

RESUMEN

Stimuli such as inflammation or hypoxia induce cytochrome P450 epoxygenase-mediated production of arachidonic acid-derived epoxyeicosatrienoic acids (EETs). EETs have cardioprotective, vasodilatory, angiogenic, anti-inflammatory, and analgesic effects, which are diminished by EET hydrolysis yielding biologically less active dihydroxyeicosatrienoic acids (DHETs). Previous in vitro assays have suggested that epoxide hydrolase 2 (EPHX2) is responsible for nearly all EET hydrolysis. EPHX1, which exhibits slow EET hydrolysis in vitro, is thought to contribute only marginally to EET hydrolysis. Using Ephx1-/-, Ephx2-/-, and Ephx1-/-Ephx2-/- mice, we show here that EPHX1 significantly contributes to EET hydrolysis in vivo Disruption of Ephx1 and/or Ephx2 genes did not induce compensatory changes in expression of other Ephx genes or CYP2 family epoxygenases. Plasma levels of 8,9-, 11,12-, and 14,15-DHET were reduced by 38, 44, and 67% in Ephx2-/- mice compared with wildtype (WT) mice, respectively; however, plasma from Ephx1-/-Ephx2-/- mice exhibited significantly greater reduction (100, 99, and 96%) of those respective DHETs. Kinetic assays and FRET experiments indicated that EPHX1 is a slow EET scavenger, but hydrolyzes EETs in a coupled reaction with cytochrome P450 to limit basal EET levels. Moreover, we also found that EPHX1 activities are biologically relevant, as Ephx1-/-Ephx2-/- hearts had significantly better postischemic functional recovery (71%) than both WT (31%) and Ephx2-/- (51%) hearts. These findings indicate that Ephx1-/-Ephx2-/- mice are a valuable model for assessing EET-mediated effects, uncover a new paradigm for EET metabolism, and suggest that dual EPHX1 and EPHX2 inhibition may represent a therapeutic approach to manage human pathologies such as myocardial infarction.


Asunto(s)
Eicosanoides/metabolismo , Epóxido Hidrolasas/metabolismo , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Animales , Epóxido Hidrolasas/química , Epóxido Hidrolasas/deficiencia , Hidrólisis , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Isquemia Miocárdica/patología , Miocardio/patología , Oxilipinas/sangre , Conformación Proteica
7.
Circ Res ; 120(11): 1776-1788, 2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28325781

RESUMEN

RATIONALE: 20-Hydroxyeicosatetraenoic acid (20-HETE), one of the principle cytochrome P450 eicosanoids, is a potent vasoactive lipid whose vascular effects include stimulation of smooth muscle contractility, migration, and proliferation, as well as endothelial cell dysfunction and inflammation. Increased levels of 20-HETE in experimental animals and in humans are associated with hypertension, stroke, myocardial infarction, and vascular diseases. OBJECTIVE: To date, a receptor/binding site for 20-HETE has been implicated based on the use of specific agonists and antagonists. The present study was undertaken to identify a receptor to which 20-HETE binds and through which it activates a signaling cascade that culminates in many of the functional outcomes attributed to 20-HETE in vitro and in vivo. METHODS AND RESULTS: Using crosslinking analogs, click chemistry, binding assays, and functional assays, we identified G-protein receptor 75 (GPR75), currently an orphan G-protein-coupled receptor (GPCR), as a specific target of 20-HETE. In cultured human endothelial cells, 20-HETE binding to GPR75 stimulated Gαq/11 protein dissociation and increased inositol phosphate accumulation and GPCR-kinase interacting protein-1-GPR75 binding, which further facilitated the c-Src-mediated transactivation of epidermal growth factor receptor. This results in downstream signaling pathways that induce angiotensin-converting enzyme expression and endothelial dysfunction. Knockdown of GPR75 or GPCR-kinase interacting protein-1 prevented 20-HETE-mediated endothelial growth factor receptor phosphorylation and angiotensin-converting enzyme induction. In vascular smooth muscle cells, GPR75-20-HETE pairing is associated with Gαq/11- and GPCR-kinase interacting protein-1-mediated protein kinase C-stimulated phosphorylation of MaxiKß, linking GPR75 activation to 20-HETE-mediated vasoconstriction. GPR75 knockdown in a mouse model of 20-HETE-dependent hypertension prevented blood pressure elevation and 20-HETE-mediated increases in angiotensin-converting enzyme expression, endothelial dysfunction, smooth muscle contractility, and vascular remodeling. CONCLUSIONS: This is the first report to identify a GPCR target for an eicosanoid of this class. The discovery of 20-HETE-GPR75 pairing presented here provides the molecular basis for the signaling and pathophysiological functions mediated by 20-HETE in hypertension and cardiovascular diseases.


Asunto(s)
Endotelio Vascular/fisiología , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensión/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Remodelación Vascular/fisiología , Animales , Células Cultivadas , Endotelio Vascular/efectos de los fármacos , Humanos , Ácidos Hidroxieicosatetraenoicos/farmacología , Ácidos Hidroxieicosatetraenoicos/toxicidad , Hipertensión/inducido químicamente , Masculino , Ratones , Ratones Transgénicos , Unión Proteica/fisiología , Ratas , Transducción de Señal/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos
8.
Int J Mol Sci ; 19(7)2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30012976

RESUMEN

The influence of Arginine 117 of human cytochrome P450 2J2 in the recognition of ebastine and a series of terfenadone derivatives was studied by site-directed mutagenesis. R117K, R117E, and R117L mutants were produced, and the behavior of these mutants in the hydroxylation of ebastine and terfenadone derivatives was compared to that of wild-type CYP2J2. The data clearly showed the importance of the formation of a hydrogen bond between R117 and the keto group of these substrates. The data were interpreted on the basis of 3D homology models of the mutants and of dynamic docking of the substrates in their active site. These modeling studies also suggested the existence of a R117-E222 salt bridge between helices B' and F that would be important for maintaining the overall folding of CYP2J2.


Asunto(s)
Arginina/genética , Sistema Enzimático del Citocromo P-450/genética , Simulación del Acoplamiento Molecular , Mutación , Arginina/química , Arginina/metabolismo , Butirofenonas/química , Butirofenonas/metabolismo , Dominio Catalítico , Citocromo P-450 CYP2J2 , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Enlace de Hidrógeno , Hidroxilación , Estructura Molecular , Piperidinas/química , Piperidinas/metabolismo , Conformación Proteica , Especificidad por Sustrato
9.
Drug Metab Dispos ; 45(7): 807-816, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28450579

RESUMEN

The CYP2C subfamily of the cytochrome P450 gene superfamily encodes heme-thiolate proteins that have a myriad of biologic functions. CYP2C proteins detoxify xenobiotics and metabolize endogenous lipids such as arachidonic acid to bioactive eicosanoids. We report new methods and results for the quantitative polymerase reaction (qPCR) analysis for the 15 members of the mouse Cyp2c subfamily (Cyp2c29, Cyp2c37, Cyp2c38, Cyp2c39, Cyp2c40, Cyp2c44, Cyp2c50, Cyp2c54, Cyp2c55, Cyp2c65, Cyp2c66, Cyp2c67, Cyp2c68, Cyp2c69, and Cyp2c70). Commercially available TaqMan primer/probe assays were compared with developed SYBR Green primer sets for specificity toward the mouse Cyp2c cDNAs and analysis of their tissue distribution. TaqMan primer/probe assays for 10 of the mouse Cyp2c isoforms were shown to be specific for their intended mouse Cyp2c cDNA; however, there were no TaqMan primer/probe assays specific for the mouse Cyp2c29, Cyp2c40, Cyp2c67, Cyp2c68, or Cyp2c69 transcripts. Each of the SYBR Green primer sets was specific for its intended mouse Cyp2c cDNA. The two qPCR methods confirmed similar patterns of Cyp2c tissue expression: Cyp2c37, Cyp2c38, Cyp2c39, Cyp2c44, Cyp2c50, Cyp2c54, and Cyp2c70 were most highly expressed in liver; Cyp2c55 was highly expressed in large intestine; Cyp2c65 was highly expressed in stomach, duodenum, and large intestine; and Cyp2c66 was highly expressed in both duodenum and jejunum. For isoforms without specific TaqMan primer/probe assays, the SYBR Green primer sets detected high level expression of Cyp2c29, Cyp2c40, Cyp2c67, Cyp2c68, and Cyp2c69 in the liver. Lower expression levels of the mouse Cyp2cs were also detected in other tissues.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Intestinos/enzimología , Hígado/enzimología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Secuencia de Aminoácidos , Animales , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Cartilla de ADN/genética , ADN Complementario/genética , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Isoenzimas , Masculino , Ratones Endogámicos C57BL , Especificidad de Órganos , ARN Mensajero/biosíntesis , ARN Mensajero/genética
10.
Drug Metab Dispos ; 43(8): 1169-80, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25994032

RESUMEN

Members of the cytochrome P450 CYP2J subfamily are expressed in multiple tissues in mice and humans. These enzymes are active in the metabolism of fatty acids to generate bioactive compounds. Herein we report new methods and results for quantitative polymerase chain reaction (qPCR) analysis for the seven genes (Cyp2j5, Cyp2j6, Cyp2j8, Cyp2j9, Cyp2j11, Cyp2j12, and Cyp2j13) of the mouse Cyp2j subfamily. SYBR Green primer sets were developed and compared with commercially available TaqMan primer/probe assays for specificity toward mouse Cyp2j cDNA, and analysis of tissue distribution and regulation of Cyp2j genes. Each TaqMan primer/probe set and SYBR Green primer set were shown to be specific for their intended mouse Cyp2j cDNA. Tissue distribution of the mouse Cyp2j isoforms confirmed similar patterns of expression between the two qPCR methods. Cyp2j5 and Cyp2j13 were highly expressed in male kidneys, and Cyp2j11 was highly expressed in both male and female kidneys. Cyp2j6 was expressed in multiple tissues, with the highest expression in the small intestine and duodenum. Cyp2j8 was detected in various tissues, with highest expression found in the skin. Cyp2j9 was highly expressed in the brain, liver, and lung. Cyp2j12 was predominately expressed in the brain. We also determined the Cyp2j isoform expression in Cyp2j5 knockout mice to determine whether there was compensatory regulation of other Cyp2j isoforms, and we assessed Cyp2j isoform regulation during various inflammatory models, including influenza A, bacterial lipopolysaccharide, house dust mite allergen, and corn pollen. Both qPCR methods detected similar suppression of Cyp2j6 and Cyp2j9 during inflammation in the lung.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Animales , Citocromo P-450 CYP2J2 , Sistema Enzimático del Citocromo P-450/biosíntesis , Cartilla de ADN , ADN Complementario/biosíntesis , ADN Complementario/genética , Femenino , Regulación Enzimológica de la Expresión Génica/genética , Hipersensibilidad/enzimología , Hipersensibilidad/genética , Riñón/enzimología , Pulmón/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/enzimología , Polen/inmunología , Reacción en Cadena de la Polimerasa , Distribución Tisular , Zea mays/inmunología
11.
FASEB J ; 28(7): 2915-31, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24668751

RESUMEN

Cytochrome P450 (CYP) 4A and 4F enzymes metabolize arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE). Although CYP4A-derived 20-HETE is known to have prohypertensive and proangiogenic properties, the effects of CYP4F-derived metabolites are not well characterized. To investigate the role of CYP4F2 in vascular disease, we generated mice with endothelial expression of human CYP4F2 (Tie2-CYP4F2-Tr). LC/MS/MS analysis revealed 2-foldincreases in 20-HETE levels in tissues and endothelial cells (ECs), relative to wild-type (WT) controls. Tie2-CYP4F2-Tr ECs demonstrated increases in growth (267.1 ± 33.4 vs. 205.0 ± 13% at 48 h) and tube formation (7.7 ± 1.1 vs. 1.6 ± 0.5 tubes/field) that were 20-HETE dependent and associated with up-regulation of prooxidant NADPH oxidase and proangiogenic VEGF. Increases in VEGF and NADPH oxidase levels were abrogated by inhibitors of NADPH oxidase and MAPK, respectively, suggesting the possibility of crosstalk between pathways. Interestingly, IL-6 levels in Tie2-CYP4F2-Tr mice (18.6 ± 2.7 vs. 7.9 ± 2.7 pg/ml) were up-regulated via NADPH oxidase- and 20-HETE-dependent mechanisms. Although Tie2-CYP4F2-Tr aortas displayed increased vasoconstriction, vasorelaxation and blood pressure were unchanged. Our findings indicate that human CYP4F2 significantly increases 20-HETE production, CYP4F2-derived 20-HETE mediates EC proliferation and angiogenesis via VEGF- and NADPH oxidase-dependent manners, and the Tie2-CYP4F2-Tr mouse is a novel model for examining the pathophysiological effects of CYP4F2-derived 20-HETE in the vasculature.-Cheng, J., Edin, M. L., Hoopes, S. L., Li, H., Bradbury, J. A., Graves, J. P., DeGraff, L. M., Lih, F. B., Garcia, V., Shaik, J. S. B., Tomer, K. B., Flake, G. P., Falck, J. R., Lee, C. R., Poloyac, S. M., Schwartzman, M. L., Zeldin, D. C. Vascular characterization of mice with endothelial expression of cytochrome P450 4F2.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Células Endoteliales/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Animales , Presión Sanguínea/genética , Células Cultivadas , Familia 4 del Citocromo P450 , Citocinas/genética , Citocinas/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/genética , Inflamación/metabolismo , Masculino , Ratones , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Estrés Oxidativo/genética , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Regulación hacia Arriba/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
12.
Am J Physiol Renal Physiol ; 307(4): F453-60, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24966089

RESUMEN

Cytochrome P-450, family 2, subfamily c, polypeptide 44 (Cyp2c44) epoxygenase metabolizes arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs) in kidney and vascular tissues. In the present study, we used real-time quantitative PCR techniques to examine the effect of high salt or high K(+) (HK) intake on the expression of Cyp2c44, a major Cyp2c epoxygenase in the mouse kidney. We detected Cyp2c44 in the proximal convoluted tubule, thick ascending limb, distal convoluted tubule (DCT)/connecting tubule (CNT), and collecting duct (CD). A high-salt diet increased the expression of Cyp2c44 in the thick ascending limb and DCT/CNT but not in the proximal convoluted tubule and CD. In contrast, an increase in dietary K(+) intake augmented Cyp2c44 expression only in the DCT/CNT and CD. Neither high salt nor HK intake had a significant effect on the blood pressure (BP) of wild-type mice. However, HK but not high salt intake increased BP in CD-specific, Cyp2c44 conditional knockout (KO) mice. Amiloride, an epithelial Na(+) channel (ENaC) inhibitor, normalized the BP of KO mice fed HK diets, suggesting that lack of Cyp2c44 in the CD enhances ENaC activity and increases Na(+) absorption in KO mice fed HK diets. This notion was supported by metabolic cage experiments demonstrating that renal Na(+) excretion was compromised in KO mice fed HK diets. Also, patch-clamp experiments demonstrated that 11,12-EET, a major Cyp2c44 product, but not AA inhibited ENaC activity in the cortical CD of KO mice. We conclude that Cyp2c44 in the CD is required for preventing the excessive Na(+) absorption induced by HK intake by inhibition of ENaC and facilitating renal Na(+) excretion.


Asunto(s)
Sistema Enzimático del Citocromo P-450/fisiología , Canales Epiteliales de Sodio/fisiología , Potasio/administración & dosificación , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacología , Amilorida/farmacología , Animales , Ácido Araquidónico/farmacología , Presión Sanguínea/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/biosíntesis , Familia 2 del Citocromo P450 , Canales Epiteliales de Sodio/efectos de los fármacos , Túbulos Renales Colectores/metabolismo , Túbulos Renales Distales/metabolismo , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Sodio/orina , Cloruro de Sodio Dietético/administración & dosificación , Cloruro de Sodio Dietético/metabolismo
13.
Am J Respir Crit Care Med ; 187(8): 812-22, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23449692

RESUMEN

RATIONALE: Helper CD4(+) T cell subsets, including IL-9- and IL-10-producing T helper cell type 9 (Th9) cells, exist under certain inflammatory conditions. Cyclooxygenase (COX)-1 and COX-2 play important roles in allergic lung inflammation and asthma. It is unknown whether COX-derived eicosanoids regulate Th9 cells during allergic lung inflammation. OBJECTIVES: To determine the role of COX metabolites in regulating Th9 cell differentiation and function during allergic lung inflammation. METHODS: COX-1(-/-), COX-2(-/-), and wild-type (WT) mice were studied in an in vivo model of ovalbumin-induced allergic inflammation and an in vitro model of Th9 differentiation using flow cytometry, cytokine assays, confocal microscopy, real-time PCR, and immunoblotting. In addition, the role of specific eicosanoids and their receptors was examined using synthetic prostaglandins (PGs), selective inhibitors, and siRNA knockdown. MEASUREMENTS AND MAIN RESULTS: Experimental endpoints were not different between COX-1(-/-) and WT mice; however, the percentage of IL-9(+) CD4(+) T cells was increased in lung, bronchoalveolar lavage fluid, lymph nodes, and blood of allergic COX-2(-/-) mice relative to WT. Bronchoalveolar lavage fluid IL-9 and IL-10, serum IL-9, and lung IL-17RB levels were significantly increased in allergic COX-2(-/-) mice or in WT mice treated with COX-2 inhibitors. IL-9, IL-10, and IL-17RB expression in vivo was inhibited by PGD2 and PGE2, which also reduced Th9 cell differentiation of murine and human naive CD4(+) T cells in vitro. Inhibition of protein kinase A significantly increased Th9 cell differentiation of naive CD4(+) T cells isolated from WT mice in vitro. CONCLUSIONS: COX-2-derived PGD2 and PGE2 regulate Th9 cell differentiation by suppressing IL-17RB expression via a protein kinase A-dependent mechanism.


Asunto(s)
Asma/inmunología , Inhibidores de la Ciclooxigenasa 2/inmunología , Pulmón/inmunología , Receptores de Interleucina-17/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Citocinas/análisis , Eicosanoides/inmunología , Eicosanoides/fisiología , Citometría de Flujo , Humanos , Immunoblotting , Inflamación/inmunología , Masculino , Ratones , Microscopía Confocal , Modelos Animales , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Biochem Pharmacol ; : 116237, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38679211

RESUMEN

Cytochromes P450 can metabolize endogenous fatty acids, such as arachidonic acid, to bioactive lipids such as epoxyeicosatrienoic acids (EETs) that have beneficial effects. EETs protect hearts against ischemic damage, heart failure or fibrosis; however, their effects are limited by hydrolysis to less active dihydroxy oxylipins by soluble epoxide hydrolase (sEH), encoded by the epoxide hydrolase 2 gene (EPHX2, EC 3.3.2.10). Pharmacological inhibition or genetic disruption of sEH/EPHX2 have been widely studied for their impact on cardiovascular diseases. Less well studied is the role of increased EPHX2 expression, which occurs in a substantial human population that carries the EPHX2 K55R polymorphism or after induction by inflammatory stimuli. Herein, we developed a mouse model with cardiomyocyte-selective expression of human EPHX2 (Myh6-EPHX2) that has significantly increased total EPHX2 expression and activity. Myh6-EPHX2 hearts exhibit strong, cardiomyocyte-selective expression of EPHX2. EPHX2 mRNA, protein, and epoxide hydrolysis measurements suggest that Myh6-EPHX2 hearts have 12-fold increase in epoxide hydrolase activity relative to wild type (WT) hearts. This increased activity significantly decreased epoxide:diol ratios in vivo. Isolated, perfused Myh6-EPHX2 hearts were not significantly different from WT hearts in basal parameters of cardiac function; however, compared to WT hearts, Myh6-EPHX2 hearts demonstrated reduced recovery of heart contractile function after ischemia and reperfusion (I/R). This impaired recovery after I/R correlated with reduced activation of PI3K/AKT and GSK3ß signaling pathways in Myh6-EPHX2 hearts compared to WT hearts. In summary, the Myh6-EPHX2 mouse line represents a novel model of cardiomyocyte-selective overexpression of EPHX2 that has detrimental effects on cardiac function.

15.
J Clin Invest ; 134(9)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483511

RESUMEN

In lung, thromboxane A2 (TXA2) activates the TP receptor to induce proinflammatory and bronchoconstrictor effects. Thus, TP receptor antagonists and TXA2 synthase inhibitors have been tested as potential asthma therapeutics in humans. Th9 cells play key roles in asthma and regulate the lung immune response to allergens. Herein, we found that TXA2 reduces Th9 cell differentiation during allergic lung inflammation. Th9 cells were decreased approximately 2-fold and airway hyperresponsiveness was attenuated in lungs of allergic mice treated with TXA2. Naive CD4+ T cell differentiation to Th9 cells and IL-9 production were inhibited dose-dependently by TXA2 in vitro. TP receptor-deficient mice had an approximately 2-fold increase in numbers of Th9 cells in lungs in vivo after OVA exposure compared with wild-type mice. Naive CD4+ T cells from TP-deficient mice exhibited increased Th9 cell differentiation and IL-9 production in vitro compared with CD4+ T cells from wild-type mice. TXA2 also suppressed Th2 and enhanced Treg differentiation both in vitro and in vivo. Thus, in contrast to its acute, proinflammatory effects, TXA2 also has longer-lasting immunosuppressive effects that attenuate the Th9 differentiation that drives asthma progression. These findings may explain the paradoxical failure of anti-thromboxane therapies in the treatment of asthma.


Asunto(s)
Asma , Diferenciación Celular , Linfocitos T Reguladores , Células Th2 , Tromboxano A2 , Animales , Ratones , Células Th2/inmunología , Células Th2/patología , Tromboxano A2/metabolismo , Tromboxano A2/inmunología , Linfocitos T Reguladores/inmunología , Asma/inmunología , Asma/patología , Asma/tratamiento farmacológico , Asma/genética , Ratones Noqueados , Interleucina-9/inmunología , Interleucina-9/genética , Interleucina-9/metabolismo , Neumonía/inmunología , Neumonía/patología , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Pulmón/inmunología , Pulmón/patología , Ovalbúmina/inmunología , Femenino , Linfocitos T Colaboradores-Inductores/inmunología
16.
Drug Metab Dispos ; 41(4): 763-73, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23315644

RESUMEN

The cytochrome P450 superfamily encompasses a diverse group of enzymes that catalyze the oxidation of various substrates. The mouse CYP2J subfamily includes members that have wide tissue distribution and are active in the metabolism of arachidonic acid (AA), linoleic acid (LA), and other lipids and xenobiotics. The mouse Cyp2j locus contains seven genes and three pseudogenes located in a contiguous 0.62 megabase cluster on chromosome 4. We describe four new mouse CYP2J isoforms (designated CYP2J8, CYP2J11, CYP2J12, and CYP2J13). The four cDNAs contain open reading frames that encode polypeptides with 62-84% identity with the three previously identified mouse CYP2Js. All four new CYP2J proteins were expressed in Sf21 insect cells. Each recombinant protein metabolized AA and LA to epoxides and hydroxy derivatives. Specific antibodies, mRNA probes, and polymerase chain reaction primer sets were developed for each mouse CYP2J to examine their tissue distribution. CYP2J8 transcripts were found in the kidney, liver, and brain, and protein expression was confirmed in the kidney and brain (neuropil). CYP2J11 transcripts were most abundant in the kidney and heart, with protein detected primarily in the kidney (proximal convoluted tubules), liver, and heart (cardiomyocytes). CYP2J12 transcripts were prominently present in the brain, and CYP2J13 transcripts were detected in multiple tissues, with the highest expression in the kidney. CYP2J12 and CYP2J13 protein expression could not be determined because the antibodies developed were not immunospecific. We conclude that the four new CYP2J isoforms might be involved in the metabolism of AA and LA to bioactive lipids in mouse hepatic and extrahepatic tissues.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Expresión Génica , Secuencia de Aminoácidos , Animales , Ácido Araquidónico/metabolismo , Encéfalo/metabolismo , Isoenzimas/metabolismo , Riñón/metabolismo , Ácido Linoleico/metabolismo , Hígado/metabolismo , Ratones , Datos de Secuencia Molecular , Miocardio/metabolismo
17.
Prostaglandins Other Lipid Mediat ; 104-105: 74-83, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23201570

RESUMEN

Cyclooxygenases and their metabolites are important regulators of inflammatory responses and play critical roles in regulating the differentiation of T helper cell subsets in inflammatory diseases. In this review, we highlight new information on regulation of T helper cell subsets by cyclooxygenases and their metabolites. Prostanoids influence cytokine production by both antigen presenting cells and T cells to regulate the differentiation of naïve CD4(+) T cells to Th1, Th2 and Th17 cell phenotypes. Cyclooxygenases and PGE2 generally exacerbate Th2 and Th17 phenotypes, while suppressing Th1 differentiation. Thus, cycloxygenases may play a critical role in diseases that involve immune cell dysfunction. Targeting of cyclooxygenases and their eicosanoid products may represent a new approach for treatment of inflammatory diseases, tumors and autoimmune disorders.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Células TH1/efectos de los fármacos , Células Th17/efectos de los fármacos , Células Th2/efectos de los fármacos , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Diferenciación Celular , Inhibidores de la Ciclooxigenasa/farmacología , Citocinas/inmunología , Citocinas/metabolismo , Dinoprostona/farmacología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Células TH1/inmunología , Células TH1/patología , Células Th17/inmunología , Células Th17/patología , Células Th2/inmunología , Células Th2/patología
18.
FASEB J ; 25(10): 3436-47, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21697548

RESUMEN

Cytochrome P450 (CYP) epoxygenases CYP2C8 and CYP2J2 generate epoxyeicosatrienoic acids (EETs) from arachidonic acid. Mice with expression of CYP2J2 in cardiomyocytes (αMHC-CYP2J2 Tr) or treated with synthetic EETs have increased functional recovery after ischemia/reperfusion (I/R); however, no studies have examined the role of cardiomyocyte- vs. endothelial-derived EETs or compared the effects of different CYP epoxygenase isoforms in the ischemic heart. We generated transgenic mice with increased endothelial EET biosynthesis (Tie2-CYP2C8 Tr and Tie2-CYP2J2 Tr) or EET hydrolysis (Tie2-sEH Tr). Compared to wild-type (WT), αMHC-CYP2J2 Tr hearts showed increased recovery of left ventricular developed pressure (LVDP) and decreased infarct size after I/R. In contrast, LVDP recovery and infarct size were unchanged in Tie2-CYP2J2 Tr and Tie2-sEH Tr hearts. Surprisingly, compared to WT, Tie2-CYP2C8 Tr hearts had significantly reduced LVDP recovery (from 21 to 14%) and increased infarct size after I/R (from 51 to 61%). Tie2-CYP2C8 Tr hearts also exhibited increased reactive oxygen species (ROS) generation, dihydroxyoctadecenoic acid (DiHOME) formation, and coronary resistance after I/R. ROS scavengers and CYP2C8 inhibition reversed the detrimental effects of CYP2C8 expression in Tie2-CYP2C8 Tr hearts. Treatment of WT hearts with 250 nM 9,10-DiHOME decreased LVDP recovery compared to vehicle (16 vs. 31%, respectively) and increased coronary resistance after I/R. These data demonstrate that increased ROS generation and enhanced DiHOME synthesis by endothelial CYP2C8 impair functional recovery and mask the beneficial effects of increased EET production following I/R.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Endotelio Vascular/metabolismo , Corazón/fisiología , Daño por Reperfusión/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2J2 , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Eicosanoides/metabolismo , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Humanos , Ratones , Ratones Transgénicos , Ácidos Oléicos/metabolismo , Regiones Promotoras Genéticas , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor TIE-2
19.
FASEB J ; 25(2): 703-13, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21059750

RESUMEN

Cytochrome P-450 (CYP)-derived epoxyeicosatrienoic acids (EETs) possess potent anti-inflammatory effects in vitro. However, the effect of increased CYP-mediated EET biosynthesis and decreased soluble epoxide hydrolase (sEH, Ephx2)-mediated EET hydrolysis on vascular inflammation in vivo has not been rigorously investigated. Consequently, we characterized acute vascular inflammatory responses to endotoxin in transgenic mice with endothelial expression of the human CYP2J2 and CYP2C8 epoxygenases and mice with targeted disruption of Ephx2. Compared to wild-type controls, CYP2J2 transgenic, CYP2C8 transgenic, and Ephx2(-/-) mice each exhibited a significant attenuation of endotoxin-induced activation of nuclear factor (NF)-κB signaling, cellular adhesion molecule, chemokine and cytokine expression, and neutrophil infiltration in lung in vivo. Furthermore, attenuation of endotoxin-induced NF-κB activation and cellular adhesion molecule and chemokine expression was observed in primary pulmonary endothelial cells isolated from CYP2J2 and CYP2C8 transgenic mice. This attenuation was inhibited by a putative EET receptor antagonist and CYP epoxygenase inhibitor, directly implicating CYP epoxygenase-derived EETs with the observed anti-inflammatory phenotype. Collectively, these data demonstrate that potentiation of the CYP epoxygenase pathway by either increased endothelial EET biosynthesis or globally decreased EET hydrolysis attenuates NF-κB-dependent vascular inflammatory responses in vivo and may serve as a viable anti-inflammatory therapeutic strategy.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Epóxido Hidrolasas/metabolismo , Inflamación/enzimología , Enfermedades Vasculares/enzimología , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Células Cultivadas , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2J2 , Sistema Enzimático del Citocromo P-450/genética , Células Endoteliales/fisiología , Endotoxemia/inducido químicamente , Epóxido Hidrolasas/genética , Femenino , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Transgénicos
20.
Am J Respir Crit Care Med ; 184(1): 37-49, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21474648

RESUMEN

RATIONALE: Th17 cells comprise a distinct lineage of proinflammatory T helper cells that are major contributors to allergic responses. It is unknown whether cyclooxygenase (COX)-derived eicosanoids regulate Th17 cells during allergic lung inflammation. OBJECTIVES: To determine the role of COX metabolites in regulating Th17 cell differentiation and function during allergic lung inflammation. METHODS: COX-1(-/-), COX-2(-/-), and wild-type mice were studied in an in vivo model of ovalbumin-induced allergic inflammation and an in vitro model of Th17 differentiation using flow cytometry, cytokine assays, confocal microscopy, real-time polymerase chain reaction, and immunoblotting. In addition, the role of specific eicosanoids and their receptors was examined using synthetic prostaglandins (PGs), selective inhibitors, and siRNA knockdown. MEASUREMENTS AND MAIN RESULTS: Th17 cell differentiation in lung, lymph nodes, and bronchoalveolar lavage fluid was significantly lower in COX-2(-/-) mice after ovalbumin sensitization and exposure in vivo. In vitro studies revealed significantly impaired Th17 cell differentiation of COX-2(-/-) naive CD4(+) T cells with decreased Stat3 phosphorylation and RORγt expression. Synthetic PGF(2α) and PGI(2) enhanced Th17 cell differentiation of COX-2(-/-) CD4(+) T cells in vitro. The selective COX-2 inhibitor, NS-398, and PGF(2α) receptor and PGI(2) receptor siRNA knockdown significantly decreased Th17 cell differentiation in vitro. Administration of synthetic PGs restored accumulation of Th17 cells in lungs of allergic COX-2(-/-) mice in vivo. CONCLUSIONS: COX-2 is a critical regulator of Th17 cell differentiation during allergic lung inflammation via autocrine signaling of PGI(2) and PGF(2α) through their respective cell surface receptors.


Asunto(s)
Asma/inmunología , Ciclooxigenasa 2/fisiología , Células Th17/inmunología , Animales , Asma/metabolismo , Asma/patología , Diferenciación Celular , Ciclooxigenasa 1/fisiología , Eicosanoides/metabolismo , Inflamación , Interleucina-17/metabolismo , Pulmón/patología , Ratones , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Ovalbúmina/inmunología , Receptores de Prostaglandina/metabolismo , Factor de Transcripción STAT3/metabolismo , Células Th17/metabolismo , Células Th17/patología , Células Th17/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA