Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(23): 6944-6960, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35582991

RESUMEN

Narratives of landscape degradation are often linked to unsustainable fire use by local communities. Madagascar is a case in point: the island is considered globally exceptional, with its remarkable endemic biodiversity viewed as threatened by unsustainable anthropogenic fire. Yet, fire regimes on Madagascar have not been empirically characterised or globally contextualised. Here, we contribute a comparative approach to determining relationships between regional fire regimes and global patterns and trends, applied to Madagascar using MODIS remote sensing data (2003-2019). Rather than a global exception, we show that Madagascar's fire regimes are similar to 88% of tropical burned area with shared climate and vegetation characteristics, and can be considered a microcosm of most tropical fire regimes. From 2003-2019, landscape-scale fire declined across tropical grassy biomes (17%-44% excluding Madagascar), and on Madagascar at a relatively fast rate (36%-46%). Thus, high tree loss anomalies on the island (1.25-4.77× the tropical average) were not explained by any general expansion of landscape-scale fire in grassy biomes. Rather, tree loss anomalies centred in forests, and could not be explained by landscape-scale fire escaping from savannas into forests. Unexpectedly, the highest tree loss anomalies on Madagascar (4.77×) occurred in environments without landscape-scale fire, where the role of small-scale fires (<21 h [0.21 km2 ]) is unknown. While landscape-scale fire declined across tropical grassy biomes, trends in tropical forests reflected important differences among regions, indicating a need to better understand regional variation in the anthropogenic drivers of forest loss and fire risk. Our new understanding of Madagascar's fire regimes offers two lessons with global implications: first, landscape-scale fire is declining across tropical grassy biomes and does not explain high tree loss anomalies on Madagascar. Second, landscape-scale fire is not uniformly associated with tropical forest loss, indicating a need for socio-ecological context in framing new narratives of fire and ecosystem degradation.


Asunto(s)
Ecosistema , Incendios , Madagascar , Bosques , Árboles , Poaceae
2.
Geohealth ; 7(10): e2023GH000811, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37822333

RESUMEN

Despite malaria prevalence being linked to surface water through vector breeding, spatial malaria predictors representing surface water often predict malaria poorly. Furthermore, precipitation, which precursors surface water, often performs better. Our goal is to determine whether novel surface water exposure indices that take malaria dispersal mechanisms into account, derived from new high-resolution surface water data, can be stronger predictors of malaria prevalence compared to precipitation. One hundred eighty candidate predictors were created by combining three surface water malaria exposures from high-accuracy and resolution (5 m resolution, overall accuracy 96%, Kappa Coefficient 0.89, Commission and Omission error 3% and 13%, respectively) water maps of East Africa. Through variable contribution analysis a subset of strong predictors was selected and used as input for Boosted Regression Tree models. We benchmarked the performance and Relative Contribution of this set of novel predictors to models using precipitation instead of surface water predictors, alternative lower resolution predictors, and simpler surface water predictors used in previous studies. The predictive performance of the novel indices rivaled or surpassed that of precipitation predictors. The novel indices substantially improved performance over the identical set of predictors derived from the lower resolution Joint Research Center surface water data set (+10% R 2, +17% Relative Contribution) and over the set of simpler predictors (+18% R 2, +30% Relative Contribution). Surface water derived indices can be strong predictors of malaria, if the spatial resolution is sufficiently high to detect small waterbodies and dispersal mechanisms of malaria related to surface water in human and vector water exposure assessment are incorporated.

3.
Science ; 376(6597): 1119-1122, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35653482

RESUMEN

Mountains are hotspots of biodiversity and ecosystem services, but they are warming about twice as fast as the global average. Climate change may reduce alpine snow cover and increase vegetation productivity, as in the Arctic. Here, we demonstrate that 77% of the European Alps above the tree line experienced greening (productivity gain) and <1% browning (productivity loss) over the past four decades. Snow cover declined significantly during this time, but in <10% of the area. These trends were only weakly correlated: Greening predominated in warmer areas, driven by climatic changes during summer, while snow cover recession peaked at colder temperatures, driven by precipitation changes. Greening could increase carbon sequestration, but this is unlikely to outweigh negative implications, including reduced albedo and water availability, thawing permafrost, and habitat loss.


Asunto(s)
Biodiversidad , Desarrollo de la Planta , Nieve , Cambio Climático , Región Alpina Europea , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA