Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Magn Reson ; 355: 107542, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37672989

RESUMEN

One of solution-state Nuclear Magnetic Resonance (NMR)'s main weaknesses, is its relative insensitivity. J-driven Dynamic Nuclear Polarization (JDNP) was recently proposed for enhancing solution-state NMR's sensitivity, by bypassing the limitations faced by conventional Overhauser DNP (ODNP), at the high magnetic fields where most analytical research is performed. By relying on biradicals with inter-electron exchange couplings Jex on the order of the electron Larmor frequency ωE, JDNP was predicted to introduce a transient enhancement in NMR's nuclear polarization at high magnetic fields, and for a wide range of rotational correlation times of medium-sized molecules in conventional solvents. This communication revisits the JDNP proposal, including additional effects and conditions that were not considered in the original treatment. These include relaxation mechanisms arising from local vibrational modes that often dominate electron relaxation in organic radicals, as well as the possibility of using biradicals with Jex of the order of the nuclear Larmor frequency ωN as potential polarizing agents. The presence of these new relaxation effects lead to variations in the JDNP polarization mechanism originally proposed, and indicate that triplet-to-singlet cross-relaxation processes may lead to a nuclear polarization enhancement that persists even at steady states. The physics and potential limitations of the ensuing theoretical derivations, are briefly discussed.

2.
ChemistryOpen ; 5(6): 531-534, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28032021

RESUMEN

The structure of protein kinases has been extensively studied by protein crystallography. Conformational movement of the kinase activation loop is thought to be crucial for regulation of activity; however, in many cases the position of the activation loop in solution is unknown. Protein kinases are an important class of therapeutic target and kinase inhibitors are classified by their effect on the activation loop. Here, we report the use of pulsed electron double resonance (PELDOR) and site-directed spin labeling to monitor conformational changes through the insertion of MTSL [S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1 H-pyrrol-3-yl)methyl methanesulfonothioate] on the dynamic activation loop and a stable site on the outer surface of the enzyme. The action of different ligands such as microtubule-associated protein (TPX2) and inhibitors could be discriminated as well as their ability to lock the activation loop in a fixed conformation. This study provides evidence for structural adaptations that could be used for drug design and a methodological approach that has potential to characterize inhibitors in development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA