Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 193(1): 291-303, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37315207

RESUMEN

Adenine base editors (ABEs) are valuable, precise genome editing tools in plants. In recent years, the highly promising ADENINE BASE EDITOR8e (ABE8e) was reported for efficient A-to-G editing. However, compared to monocots, comprehensive off-target analyses for ABE8e are lacking in dicots. To determine the occurrence of off-target effects in tomato (Solanum lycopersicum), we assessed ABE8e and a high-fidelity version, ABE8e-HF, at 2 independent target sites in protoplasts, as well as stable T0 lines. Since ABE8e demonstrated higher on-target efficiency than ABE8e-HF in tomato protoplasts, we focused on ABE8e for off-target analyses in T0 lines. We conducted whole-genome sequencing (WGS) of wild-type (WT) tomato plants, green fluorescent protein (GFP)-expressing T0 lines, ABE8e-no-gRNA control T0 lines, and edited T0 lines. No guide RNA (gRNA)-dependent off-target edits were detected. Our data showed an average of approximately 1,200 to 1,500 single-nucleotide variations (SNVs) in either GFP control plants or base-edited plants. Also, no specific enrichment of A-to-G mutations were found in base-edited plants. We also conducted RNA sequencing (RNA-seq) of the same 6 base-edited and 3 GFP control T0 plants. On average, approximately 150 RNA-level SNVs were discovered per plant for either base-edited or GFP controls. Furthermore, we did not find enrichment of a TA motif on mutated adenine in the genomes and transcriptomes in base-edited tomato plants, as opposed to the recent discovery in rice (Oryza sativa). Hence, we could not find evidence for genome- and transcriptome-wide off-target effects by ABE8e in tomato.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Transcriptoma/genética , Adenina/metabolismo , Mutación/genética , Edición Génica , ARN/genética , Sistemas CRISPR-Cas
2.
Science ; 385(6708): eado1663, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088611

RESUMEN

An enduring question in evolutionary biology concerns the degree to which episodes of convergent trait evolution depend on the same genetic programs, particularly over long timescales. In this work, we genetically dissected repeated origins and losses of prickles-sharp epidermal projections-that convergently evolved in numerous plant lineages. Mutations in a cytokinin hormone biosynthetic gene caused at least 16 independent losses of prickles in eggplants and wild relatives in the genus Solanum. Homologs underlie prickle formation across angiosperms that collectively diverged more than 150 million years ago, including rice and roses. By developing new Solanum genetic systems, we leveraged this discovery to eliminate prickles in a wild species and an indigenously foraged berry. Our findings implicate a shared hormone activation genetic program underlying evolutionarily widespread and recurrent instances of plant morphological innovation.


Asunto(s)
Evolución Biológica , Citocininas , Genes de Plantas , Epidermis de la Planta , Solanum , Citocininas/biosíntesis , Citocininas/genética , Evolución Molecular , Mutación , Oryza/genética , Filogenia , Epidermis de la Planta/anatomía & histología , Epidermis de la Planta/genética , Solanum/anatomía & histología , Solanum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA