Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(34): e2315510121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39133851

RESUMEN

Mechanical energy, specifically in the form of ultrasound, can induce pressure variations and temperature fluctuations when applied to an aqueous media. These conditions can both positively and negatively affect protein complexes, consequently altering their stability, folding patterns, and self-assembling behavior. Despite much scientific progress, our current understanding of the effects of ultrasound on the self-assembly of amyloidogenic proteins remains limited. In the present study, we demonstrate that when the amplitude of the delivered ultrasonic energy is sufficiently low, it can induce refolding of specific motifs in protein monomers, which is sufficient for primary nucleation; this has been revealed by MD. These ultrasound-induced structural changes are initiated by pressure perturbations and are accelerated by a temperature factor. Furthermore, the prolonged action of low-amplitude ultrasound enables the elongation of amyloid protein nanofibrils directly from natively folded monomeric lysozyme protein, in a controlled manner, until it reaches a critical length. Using solution X-ray scattering, we determined that nanofibrillar assemblies, formed either under the action of sound or from natively fibrillated lysozyme, share identical structural characteristics. Thus, these results provide insights into the effects of ultrasound on fibrillar protein self-assembly and lay the foundation for the potential use of sound energy in protein chemistry.


Asunto(s)
Amiloide , Muramidasa , Amiloide/química , Amiloide/metabolismo , Muramidasa/química , Muramidasa/metabolismo , Pliegue de Proteína , Temperatura , Ondas Ultrasónicas , Simulación de Dinámica Molecular
2.
bioRxiv ; 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37745331

RESUMEN

Mechanical energy, specifically in the form of ultrasound, can induce pressure variations and temperature fluctuations when applied to an aqueous media. These conditions can both positively and negatively affect protein complexes, influencing their stability, folding patterns, and self-assembling behavior. Regarding understanding the effects of ultrasound on the self-assembly of amyloidogenic proteins, our knowledge remains quite limited. In our recent work, we established the boundary conditions under which sound energy can either cause damage or induce only negligible changes in the structure of protein species. In the present study, we demonstrate that when the delivered ultrasonic energy is sufficiently low, it can induce refolding of specific motifs in protein monomers, as it has been revealed by MD, which is sufficient for primary nucleation, characterized by adopting a hydrogen-bonded ß -sheet-rich structure. These structural changes are initiated by pressure perturbations and are accelerated by a temperature factor. Furthermore, the prolonged action of low-amplitude ultrasound enables the elongation of amyloid protein nanofibrils directly from monomeric lysozyme proteins, in a controlled manner, until they reach a critical length. Using solution X-ray scattering, we determined that nanofibrillar assemblies, formed under the influence of ultrasound energy and natively fibrillated lysozyme, share identical structural characteristics. Thus, these results contribute to our understanding of the effects of ultrasound on fibrillar protein self-assembly and lay the foundation for the potential exploitation of sound energy in a protein chemistry environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA