Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 17(4): 394-402, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33462496

RESUMEN

Efficient genome editing methods are essential for biotechnology and fundamental research. Homologous recombination (HR) is the most versatile method of genome editing, but techniques that rely on host RecA-mediated pathways are inefficient and laborious. Phage-encoded single-stranded DNA annealing proteins (SSAPs) improve HR 1,000-fold above endogenous levels. However, they are not broadly functional. Using Escherichia coli, Lactococcus lactis, Mycobacterium smegmatis, Lactobacillus rhamnosus and Caulobacter crescentus, we investigated the limited portability of SSAPs. We find that these proteins specifically recognize the C-terminal tail of the host's single-stranded DNA-binding protein (SSB) and are portable between species only if compatibility with this host domain is maintained. Furthermore, we find that co-expressing SSAPs with SSBs can significantly improve genome editing efficiency, in some species enabling SSAP functionality even without host compatibility. Finally, we find that high-efficiency HR far surpasses the mutational capacity of commonly used random mutagenesis methods, generating exceptional phenotypes that are inaccessible through sequential nucleotide conversions.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Edición Génica/métodos , Recombinación Homóloga/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Caulobacter crescentus/metabolismo , ADN/química , ADN/genética , Reparación del ADN , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Escherichia coli/metabolismo , Recombinación Homóloga/genética , Lactococcus/metabolismo , Mycobacterium smegmatis/metabolismo , Dominios Proteicos/genética
2.
Proc Natl Acad Sci U S A ; 117(24): 13689-13698, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32467157

RESUMEN

Exploiting bacteriophage-derived homologous recombination processes has enabled precise, multiplex editing of microbial genomes and the construction of billions of customized genetic variants in a single day. The techniques that enable this, multiplex automated genome engineering (MAGE) and directed evolution with random genomic mutations (DIvERGE), are however, currently limited to a handful of microorganisms for which single-stranded DNA-annealing proteins (SSAPs) that promote efficient recombineering have been identified. Thus, to enable genome-scale engineering in new hosts, efficient SSAPs must first be found. Here we introduce a high-throughput method for SSAP discovery that we call "serial enrichment for efficient recombineering" (SEER). By performing SEER in Escherichia coli to screen hundreds of putative SSAPs, we identify highly active variants PapRecT and CspRecT. CspRecT increases the efficiency of single-locus editing to as high as 50% and improves multiplex editing by 5- to 10-fold in E. coli, while PapRecT enables efficient recombineering in Pseudomonas aeruginosa, a concerning human pathogen. CspRecT and PapRecT are also active in other, clinically and biotechnologically relevant enterobacteria. We envision that the deployment of SEER in new species will pave the way toward pooled interrogation of genotype-to-phenotype relationships in previously intractable bacteria.


Asunto(s)
Proteínas Bacterianas/genética , Escherichia coli/genética , Pseudomonas aeruginosa/genética , Recombinación Genética , Ingeniería Genética , Genoma Bacteriano , Mutación
3.
Mol Biol Evol ; 38(9): 3606-3620, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33944920

RESUMEN

Disease susceptibility and resistance are important factors for the conservation of endangered species, including elephants. We analyzed pathology data from 26 zoos and report that Asian elephants have increased neoplasia and malignancy prevalence compared with African bush elephants. This is consistent with observed higher susceptibility to tuberculosis and elephant endotheliotropic herpesvirus (EEHV) in Asian elephants. To investigate genetic mechanisms underlying disease resistance, including differential responses between species, among other elephant traits, we sequenced multiple elephant genomes. We report a draft assembly for an Asian elephant, and defined 862 and 1,017 conserved potential regulatory elements in Asian and African bush elephants, respectively. In the genomes of both elephant species, conserved elements were significantly enriched with genes differentially expressed between the species. In Asian elephants, these putative regulatory regions were involved in immunity pathways including tumor-necrosis factor, which plays an important role in EEHV response. Genomic sequences of African bush, forest, and Asian elephant genomes revealed extensive sequence conservation at TP53 retrogene loci across three species, which may be related to TP53 functionality in elephant cancer resistance. Positive selection scans revealed outlier genes related to additional elephant traits. Our study suggests that gene regulation plays an important role in the differential inflammatory response of Asian and African elephants, leading to increased infectious disease and cancer susceptibility in Asian elephants. These genomic discoveries can inform future functional and translational studies aimed at identifying effective treatment approaches for ill elephants, which may improve conservation.


Asunto(s)
Elefantes , Infecciones por Herpesviridae , Herpesviridae , Animales , Elefantes/genética , Especies en Peligro de Extinción , Herpesviridae/genética , Infecciones por Herpesviridae/epidemiología
4.
Nature ; 518(7537): 55-60, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25607366

RESUMEN

Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.


Asunto(s)
Aminoácidos/química , Aminoácidos/metabolismo , Contención de Riesgos Biológicos/métodos , Proteínas de Escherichia coli/biosíntesis , Escherichia coli/genética , Escherichia coli/metabolismo , Organismos Modificados Genéticamente/genética , Biología Sintética/métodos , Evolución Biológica , Codón/genética , Ecosistema , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferencia de Gen Horizontal/genética , Genes Esenciales/genética , Código Genético/genética , Ingeniería Genética/métodos , Viabilidad Microbiana/genética , Mutación/genética , Organismos Modificados Genéticamente/metabolismo , Seguridad , Selección Genética
5.
Proc Natl Acad Sci U S A ; 115(21): E4940-E4949, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735666

RESUMEN

Although the genetic code is redundant, synonymous codons for the same amino acid are not used with equal frequencies in genomes, a phenomenon termed "codon usage bias." Previous studies have demonstrated that synonymous changes in a coding sequence can exert significant cis effects on the gene's expression level. However, whether the codon composition of a gene can also affect the translation efficiency of other genes has not been thoroughly explored. To study how codon usage bias influences the cellular economy of translation, we massively converted abundant codons to their rare synonymous counterpart in several highly expressed genes in Escherichia coli This perturbation reduces both the cellular fitness and the translation efficiency of genes that have high initiation rates and are naturally enriched with the manipulated codon, in agreement with theoretical predictions. Interestingly, we could alleviate the observed phenotypes by increasing the supply of the tRNA for the highly demanded codon, thus demonstrating that the codon usage of highly expressed genes was selected in evolution to maintain the efficiency of global protein translation.


Asunto(s)
Codón/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Biosíntesis de Proteínas , Proteoma/análisis , ARN de Transferencia/metabolismo , Transcriptoma , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Evolución Molecular , Sistemas de Lectura Abierta , Proteoma/genética , ARN de Transferencia/genética
6.
Risk Anal ; 41(10): 1759-1781, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33665886

RESUMEN

A common concern about volcanic unrest is that the communication of information about increasing volcanic alert levels (VALs) to the public could cause serious social and economic impacts even if an eruption does not occur. To test this statement, this study examined housing prices and business patterns from 1974-2016 in volcanic regions with "very-high" threat designations from the U.S. Geological Survey (USGS)-Long Valley Caldera (LVC), CA (caldera); Mount St. Helens (MSH), Washington (stratovolcano); and Kilauea, Hawai'i (shield volcano). To compare economic trends in nonvolcanic regions that are economically dependent on tourism, Steamboat Springs, CO, served as a control as it is a ski-tourism community much like Mammoth Lakes in LVC. Autoregressive distributed lag (ARDL) models predicted that housing prices were negatively affected by VALs at LVC from 1982-1983 and 1991-1997. While VALs associated with unrest and eruptions included in this study both had short-term indirect effects on housing prices and business indicators (e.g., number of establishments, employment, and salary), these notifications were not strong predictors of long-term economic trends. Our findings suggest that these indirect effects result from both eruptions with higher level VALs and from unrest involving lower-level VAL notifications that communicate a change in volcanic activity but do not indicate that an eruption is imminent or underway. This provides evidence concerning a systemic issue in disaster resilience. While disaster relief is provided by the U.S. federal government for direct impacts associated with disaster events that result in presidential major disaster declarations, there is limited or no assistance for indirect effects to businesses and homeowners that may follow volcanic unrest with no resulting direct physical losses. The fact that periods of volcanic unrest preceding eruption are often protracted in comparison to precursory periods for other hazardous events (e.g., earthquakes, hurricanes, flooding) makes the issue of indirect effects particularly important in regions susceptible to volcanic activity.

7.
Proc Natl Acad Sci U S A ; 113(38): E5588-97, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27601680

RESUMEN

The degeneracy of the genetic code allows nucleic acids to encode amino acid identity as well as noncoding information for gene regulation and genome maintenance. The rare arginine codons AGA and AGG (AGR) present a case study in codon choice, with AGRs encoding important transcriptional and translational properties distinct from the other synonymous alternatives (CGN). We created a strain of Escherichia coli with all 123 instances of AGR codons removed from all essential genes. We readily replaced 110 AGR codons with the synonymous CGU codons, but the remaining 13 "recalcitrant" AGRs required diversification to identify viable alternatives. Successful replacement codons tended to conserve local ribosomal binding site-like motifs and local mRNA secondary structure, sometimes at the expense of amino acid identity. Based on these observations, we empirically defined metrics for a multidimensional "safe replacement zone" (SRZ) within which alternative codons are more likely to be viable. To evaluate synonymous and nonsynonymous alternatives to essential AGRs further, we implemented a CRISPR/Cas9-based method to deplete a diversified population of a wild-type allele, allowing us to evaluate exhaustively the fitness impact of all 64 codon alternatives. Using this method, we confirmed the relevance of the SRZ by tracking codon fitness over time in 14 different genes, finding that codons that fall outside the SRZ are rapidly depleted from a growing population. Our unbiased and systematic strategy for identifying unpredicted design flaws in synthetic genomes and for elucidating rules governing codon choice will be crucial for designing genomes exhibiting radically altered genetic codes.


Asunto(s)
Arginina/genética , Escherichia coli/genética , ARN Mensajero/genética , Aminoácidos/genética , Codón/genética , Genes Esenciales/genética , Código Genético , Genoma Bacteriano , Biosíntesis de Proteínas/genética , ARN Mensajero/biosíntesis
8.
Methods ; 121-122: 16-28, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28351759

RESUMEN

Genome editing using the CRISPR/Cas9 system requires the presence of guide RNAs bound to the Cas9 endonuclease as a ribonucleoprotein (RNP) complex in cells, which cleaves the host cell genome at sites specified by the guide RNAs. New genetic material may be introduced during repair of the double-stranded break via homology dependent repair (HDR) if suitable DNA templates are delivered with the CRISPR components. Early methods used plasmid or viral vectors to make these components in the host cell, however newer approaches using recombinant Cas9 protein with synthetic guide RNAs introduced directly as an RNP complex into cells shows faster onset of action with fewer off-target effects. This approach also enables use of chemically modified synthetic guide RNAs that have improved nuclease stability and reduces the risk of triggering an innate immune response in the host cell. This article provides detailed methods for genome editing using the RNP approach with synthetic guide RNAs using lipofection or electroporation in mammalian cells or using microinjection in murine zygotes, with or without addition of a single-stranded HDR template DNA.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Endonucleasas/genética , Edición Génica/métodos , Técnicas de Transferencia de Gen , ARN Guía de Kinetoplastida/genética , Ribonucleoproteínas/genética , Animales , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Proteína 9 Asociada a CRISPR , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética , ADN/metabolismo , Electroporación , Endonucleasas/metabolismo , Marcación de Gen/métodos , Genoma , Células HEK293 , Humanos , Células Jurkat , Lípidos/química , Ratones , Microinyecciones , ARN Guía de Kinetoplastida/síntesis química , ARN Guía de Kinetoplastida/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reparación del ADN por Recombinación , Ribonucleoproteínas/metabolismo , Cigoto/citología , Cigoto/metabolismo
9.
Proc Natl Acad Sci U S A ; 112(2): 542-7, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548184

RESUMEN

A well known, epidemiologically reproducible risk factor for human carcinomas is the long-term consumption of "red meat" of mammalian origin. Although multiple theories have attempted to explain this human-specific association, none have been conclusively proven. We used an improved method to survey common foods for free and glycosidically bound forms of the nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc), showing that it is highly and selectively enriched in red meat. The bound form of Neu5Gc is bioavailable, undergoing metabolic incorporation into human tissues, despite being a foreign antigen. Interactions of this antigen with circulating anti-Neu5Gc antibodies could potentially incite inflammation. Indeed, when human-like Neu5Gc-deficient mice were fed bioavailable Neu5Gc and challenged with anti-Neu5Gc antibodies, they developed evidence of systemic inflammation. Such mice are already prone to develop occasional tumors of the liver, an organ that can incorporate dietary Neu5Gc. Neu5Gc-deficient mice immunized against Neu5Gc and fed bioavailable Neu5Gc developed a much higher incidence of hepatocellular carcinomas, with evidence of Neu5Gc accumulation. Taken together, our data provide an unusual mechanistic explanation for the epidemiological association between red meat consumption and carcinoma risk. This mechanism might also contribute to other chronic inflammatory processes epidemiologically associated with red meat consumption.


Asunto(s)
Inflamación/etiología , Neoplasias Hepáticas Experimentales/etiología , Carne/efectos adversos , Carne/análisis , Ácidos Neuramínicos/efectos adversos , Animales , Anticuerpos Bloqueadores/metabolismo , Progresión de la Enfermedad , Análisis de los Alimentos , Humanos , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Noqueados , Oxigenasas de Función Mixta/deficiencia , Oxigenasas de Función Mixta/genética , Ácido N-Acetilneuramínico/análisis , Ácidos Neuramínicos/análisis , Ácidos Neuramínicos/inmunología , Factores de Riesgo
11.
Nucleic Acids Res ; 42(7): 4779-90, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24452804

RESUMEN

Selection has been invaluable for genetic manipulation, although counter-selection has historically exhibited limited robustness and convenience. TolC, an outer membrane pore involved in transmembrane transport in E. coli, has been implemented as a selectable/counter-selectable marker, but counter-selection escape frequency using colicin E1 precludes using tolC for inefficient genetic manipulations and/or with large libraries. Here, we leveraged unbiased deep sequencing of 96 independent lineages exhibiting counter-selection escape to identify loss-of-function mutations, which offered mechanistic insight and guided strain engineering to reduce counter-selection escape frequency by ∼40-fold. We fundamentally improved the tolC counter-selection by supplementing a second agent, vancomycin, which reduces counter-selection escape by 425-fold, compared colicin E1 alone. Combining these improvements in a mismatch repair proficient strain reduced counter-selection escape frequency by 1.3E6-fold in total, making tolC counter-selection as effective as most selectable markers, and adding a valuable tool to the genome editing toolbox. These improvements permitted us to perform stable and continuous rounds of selection/counter-selection using tolC, enabling replacement of 10 alleles without requiring genotypic screening for the first time. Finally, we combined these advances to create an optimized E. coli strain for genome engineering that is ∼10-fold more efficient at achieving allelic diversity than previous best practices.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Ingeniería Genética/métodos , Proteínas de Transporte de Membrana/genética , Alelos , Biomarcadores , Escherichia coli/genética , Eliminación de Gen , Duplicación de Gen , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo
12.
Bull Volcanol ; 86(2): 10, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38205134

RESUMEN

The simultaneous or sequential occurrence of several hazards-be they of natural or anthropogenic sources-can interact to produce unexpected compound hazards and impacts. Since success in responding to volcanic crises is often conditional on accurate identification of spatiotemporal patterns of hazard prior to an eruption, ignoring these interactions can lead to a misrepresentation or misinterpretation of the risk and, during emergencies, ineffective management priorities. The 2021 eruption of Tajogaite volcano on the island of La Palma, Canary Islands (Spain), was an 86 day-long hybrid explosive-effusive eruption that demonstrated the challenges of managing volcanic crises associated with the simultaneous emission of lava, tephra and volcanic gases. Here, we present the result of a small-scale impact assessment conducted during three-field deployments to investigate how tephra fallout and lava flow inundation interacted to cause compound physical impact on buildings. The study area was a neighbourhood of 30 buildings exposed to tephra fallout during the entire eruption and by a late-stage, short-lived lava flow. Observations highlight, on one hand, the influence of clean-up operations and rainfall on the impact of tephra fallout and, on the other hand, the importance of the dynamics of lava flow emplacement in controlling impact mechanisms. Overall, results provide an evidence-based insight into impact sequences when two primary hazards are produced simultaneously and demonstrate the importance of considering this aspect when implementing risk mitigation strategies for future long-lasting, hybrid explosive-effusive eruptions in urban environments. Supplementary Information: The online version contains supplementary material available at 10.1007/s00445-023-01700-w.

13.
bioRxiv ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38979381

RESUMEN

Elucidating the genetic basis of mammalian metabolism could help define mechanisms central to health and disease. Here, we define conserved cis-regulatory elements (CREs) and programs for mammalian metabolic control. We delineate gene expression and chromatin responses in the mouse hypothalamus for 7 steps of the Fed-to-Fasted-to-Refed (FFR) response process. Comparative genomics of hibernating versus non-hibernating lineages then illuminates cis-elements showing convergent changes in hibernators. Hibernators accumulated loss-of-function effects for specific CREs regulating hypothalamic FFR responses. Multi-omics approaches pinpoint key CREs, genes, regulatory programs, and cell types in the divergence of hibernating and homeothermic lineages. The refeeding period after extended fasting is revealed as one critical period of chromatin remodeling with convergent genomic changes. This genetic framework is a step toward harnessing hibernator adaptations in medicine.

14.
bioRxiv ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38979203

RESUMEN

Our study elucidates functional roles for conserved cis-elements associated with the evolution of mammalian hibernation. Genomic analyses found topologically associated domains (TADs) that disproportionately accumulated convergent genomic changes in hibernators, including the TAD for the Fat Mass & Obesity (Fto) locus. Some hibernation-linked cis-elements in this TAD form regulatory contacts with multiple neighboring genes. Knockout mice for these cis-elements exhibit Fto, Irx3, and Irx5 gene expression changes, impacting hundreds of genes downstream. Profiles of pre-torpor, torpor, and post-torpor phenotypes found distinct roles for each cis-element in metabolic control, while a high caloric diet uncovered different obesogenic effects. One cis-element promoting a lean phenotype influences foraging behaviors throughout life, affecting specific behavioral sequences. Thus, convergent evolution in hibernators pinpoints functional genetic mechanisms of mammalian metabolic control.

15.
Cancers (Basel) ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39001427

RESUMEN

For many patients, the cancer continuum includes a syndrome known as cancer-associated cachexia (CAC), which encompasses the unintended loss of body weight and muscle mass, and is often associated with fat loss, decreased appetite, lower tolerance and poorer response to treatment, poor quality of life, and reduced survival. Unfortunately, there are no effective therapeutic interventions to completely reverse cancer cachexia and no FDA-approved pharmacologic agents; hence, new approaches are urgently needed. In May of 2022, researchers and clinicians from Moffitt Cancer Center held an inaugural retreat on CAC that aimed to review the state of the science, identify knowledge gaps and research priorities, and foster transdisciplinary collaborative research projects. This review summarizes research priorities that emerged from the retreat, examples of ongoing collaborations, and opportunities to move science forward. The highest priorities identified include the need to (1) evaluate patient-reported outcome (PRO) measures obtained in clinical practice and assess their use in improving CAC-related outcomes; (2) identify biomarkers (imaging, molecular, and/or behavioral) and novel analytic approaches to accurately predict the early onset of CAC and its progression; and (3) develop and test interventions (pharmacologic, nutritional, exercise-based, and through mathematical modeling) to prevent CAC progression and improve associated symptoms and outcomes.

16.
Front Oncol ; 14: 1362244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109281

RESUMEN

Introduction: Cancer-associated cachexia (CC) is a progressive syndrome characterized by unintentional weight loss, muscle atrophy, fatigue, and poor outcomes that affects most patients with pancreatic ductal adenocarcinoma (PDAC). The ability to identify and classify CC stage along its continuum early in the disease process is challenging but critical for management. Objectives: The main objective of this study was to determine the prevalence of CC stage overall and by sex and race and ethnicity among treatment-naïve PDAC cases using clinical, nutritional, and functional criteria. Secondary objectives included identifying the prevalence and predictors of higher symptom burden, supportive care needs, and quality of life (QoL), and examining their influence on overall survival (OS). Materials and methods: A population-based multi-institutional prospective cohort study of patients with PDAC was conducted between 2018 and 2021 by the Florida Pancreas Collaborative. Leveraging patient-reported data and laboratory values, participants were classified at baseline into four stages [non-cachexia (NCa), pre-cachexia (PCa), cachexia (Ca), and refractory cachexia (RCa)]. Multivariate regression, Kaplan Meier analyses, and Cox regression were conducted to evaluate associations. Results: CC stage was estimated for 309 PDAC cases (156 females, 153 males). The overall prevalence of NCa, PCa, Ca, and RCa was 12.9%, 24.6%, 54.1%, and 8.4%, respectively. CC prevalence across all CC stages was highest for males and racial and ethnic minorities. Criteria differentiated NCa cases from other groups, but did not distinguish PCa from Ca. The most frequently reported symptoms included weight loss, fatigue, pain, anxiety, and depression, with pain significantly worsening over time. The greatest supportive care needs included emotional and physical domains. Males, Black people, and those with RCa had the worst OS. Conclusions: Using clinical, nutritional, and functional criteria, nearly one-quarter of the PDAC cases in our diverse, multi-institutional cohort had PCa and 62.5% had Ca or RCa at the time of diagnosis. The PCa estimate is higher than that reported in prior studies. We recommend these criteria be used to aid in CC classification, monitoring, and management of all incident PDAC cases. Findings also highlight the recommendation for continued emotional support, assistance in alleviating pain, and supportive care needs throughout the PDAC treatment journey.

17.
J Biol Chem ; 287(34): 28852-64, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22692204

RESUMEN

Although N-acetyl groups are common in nature, N-glycolyl groups are rare. Mammals express two major sialic acids, N-acetylneuraminic acid and N-glycolylneuraminic acid (Neu5Gc). Although humans cannot produce Neu5Gc, it is detected in the epithelial lining of hollow organs, endothelial lining of the vasculature, fetal tissues, and carcinomas. This unexpected expression is hypothesized to result via metabolic incorporation of Neu5Gc from mammalian foods. This accumulation has relevance for diseases associated with such nutrients, via interaction with Neu5Gc-specific antibodies. Little is known about how ingested sialic acids in general and Neu5Gc in particular are metabolized in the gastrointestinal tract. We studied the gastrointestinal and systemic fate of Neu5Gc-containing glycoproteins (Neu5Gc-glycoproteins) or free Neu5Gc in the Neu5Gc-free Cmah(-/-) mouse model. Ingested free Neu5Gc showed rapid absorption into the circulation and urinary excretion. In contrast, ingestion of Neu5Gc-glycoproteins led to Neu5Gc incorporation into the small intestinal wall, appearance in circulation at a steady-state level for several hours, and metabolic incorporation into multiple peripheral tissue glycoproteins and glycolipids, thus conclusively proving that Neu5Gc can be metabolically incorporated from food. Feeding Neu5Gc-glycoproteins but not free Neu5Gc mimics the human condition, causing tissue incorporation into human-like sites in Cmah(-/-) fetal and adult tissues, as well as developing tumors. Thus, glycoproteins containing glycosidically linked Neu5Gc are the likely dietary source for human tissue accumulation, and not the free monosaccharide. This human-like model can be used to elucidate specific mechanisms of Neu5Gc delivery from the gut to tissues, as well as general mechanisms of metabolism of ingested sialic acids.


Asunto(s)
Antígenos Heterófilos/metabolismo , Autoantígenos/metabolismo , Tracto Gastrointestinal/metabolismo , Glicoproteínas/metabolismo , Productos de la Carne , Ácidos Neuramínicos/metabolismo , Animales , Glicoproteínas/genética , Humanos , Ratones , Ratones Noqueados , Especificidad de la Especie
18.
Cell Rep ; 42(1): 111945, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640362

RESUMEN

Genes are typically assumed to express both parental alleles similarly, yet cell lines show random allelic expression (RAE) for many autosomal genes that could shape genetic effects. Thus, understanding RAE in human tissues could improve our understanding of phenotypic variation. Here, we develop a methodology to perform genome-wide profiling of RAE and biallelic expression in GTEx datasets for 832 people and 54 tissues. We report 2,762 autosomal genes with some RAE properties similar to randomly inactivated X-linked genes. We found that RAE is associated with rapidly evolving regions in the human genome, adaptive signaling processes, and genes linked to age-related diseases such as neurodegeneration and cancer. We define putative mechanistic subtypes of RAE distinguished by gene overlaps on sense and antisense DNA strands, aggregation in clusters near telomeres, and increased regulatory complexity and inputs compared with biallelic genes. We provide foundations to study RAE in human phenotypes, evolution, and disease.


Asunto(s)
Cromosomas , Cuerpo Humano , Humanos , Adulto , Alelos , Fenotipo , Línea Celular
19.
iScience ; 26(5): 106761, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37216088

RESUMEN

Foraging in animals relies on innate decision-making heuristics that can result in suboptimal cognitive biases in some contexts. The mechanisms underlying these biases are not well understood, but likely involve strong genetic effects. To explore this, we studied fasted mice using a naturalistic foraging paradigm and discovered an innate cognitive bias called "second-guessing." This involves repeatedly investigating an empty former food patch instead of consuming available food, which hinders the mice from maximizing feeding benefits. The synaptic plasticity gene Arc is revealed to play a role in this bias, as Arc-deficient mice did not exhibit second-guessing and consumed more food. In addition, unsupervised machine learning decompositions of foraging identified specific behavior sequences, or "modules", that are affected by Arc. These findings highlight the genetic basis of cognitive biases in decision making, show links between behavior modules and cognitive bias, and provide insight into the ethological roles of Arc in naturalistic foraging.

20.
J Cell Biol ; 177(2): 289-303, 2007 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-17438077

RESUMEN

We define the dynamics of spatial and temporal reorganization of the team of proteins and lipids serving peroxisome division. The peroxisome becomes competent for division only after it acquires the complete set of matrix proteins involved in lipid metabolism. Overloading the peroxisome with matrix proteins promotes the relocation of acyl-CoA oxidase (Aox), an enzyme of fatty acid beta-oxidation, from the matrix to the membrane. The binding of Aox to Pex16p, a membrane-associated peroxin required for peroxisome biogenesis, initiates the biosynthesis of phosphatidic acid and diacylglycerol (DAG) in the membrane. The formation of these two lipids and the subsequent transbilayer movement of DAG initiate the assembly of a complex between the peroxins Pex10p and Pex19p, the dynamin-like GTPase Vps1p, and several actin cytoskeletal proteins on the peroxisomal surface. This protein team promotes membrane fission, thereby executing the terminal step of peroxisome division.


Asunto(s)
Acil-CoA Oxidasa/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Transducción de Señal , Yarrowia/metabolismo , Aciltransferasas/metabolismo , Citosol/química , Diglicéridos/metabolismo , Retículo Endoplásmico/química , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Complejos Multiproteicos/metabolismo , Peroxisomas/química , Fosfatidato Fosfatasa/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas/metabolismo , Yarrowia/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA