Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 137(6): 1018-31, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19524506

RESUMEN

Retinoblastomas result from the inactivation of the RB1 gene and the loss of Rb protein, yet the cell type in which Rb suppresses retinoblastoma and the circuitry that underlies the need for Rb are undefined. Here, we show that retinoblastoma cells express markers of postmitotic cone precursors but not markers of other retinal cell types. We also demonstrate that human cone precursors prominently express MDM2 and N-Myc, that retinoblastoma cells require both of these proteins for proliferation and survival, and that MDM2 is needed to suppress ARF-induced apoptosis in cultured retinoblastoma cells. Interestingly, retinoblastoma cell MDM2 expression was regulated by the cone-specific RXRgamma transcription factor and a human-specific RXRgamma consensus binding site, and proliferation required RXRgamma, as well as the cone-specific thyroid hormone receptor-beta2. These findings provide support for a cone precursor origin of retinoblastoma and suggest that human cone-specific signaling circuitry sensitizes to the oncogenic effects of RB1 mutations.


Asunto(s)
Proliferación Celular , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Retinoblastoma/metabolismo , Transducción de Señal , Animales , Supervivencia Celular , Humanos , Ratones , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas c-myc/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Receptor gamma X Retinoide/metabolismo , Receptores beta de Hormona Tiroidea/metabolismo , Trasplante Heterólogo
2.
Ophthalmologica ; : 1-10, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043154

RESUMEN

INTRODUCTION: Conclusive molecular genetic diagnoses in inherited retinal diseases remains a major challenge due to the large number of variants of uncertain significance (VUS) identified in genetic testing. Here, we determined the genotypic and phenotypic spectrum of ABCA4 gene variants in a cohort of Canadian inherited retinal dystrophy subjects. METHODS: This retrospective study evaluated 64 subjects with an inherited retinal dystrophy diagnosis with variants in the ABCA4 gene. Pathogenicity of variants was assessed by comparison to genetic databases and in silico modelling. ABCA4 variants classified as VUS were further evaluated using a cryo-electron structural model of the ABCA4 protein to predict impact on protein function and were also assessed for evolutionary conservation. RESULTS: Conclusive disease-causing biallelic ABCA4 variants were detected in 52 subjects with either Stargardt's disease, cone-rod dystrophy, macular dystrophy, or pattern dystrophy. A further 14 variants were novel comprising 1 nonsense, 1 frameshift, 3 splicing, and 9 missense variants. Based on in silico modelling, protein modelling and evolutionary conservation from human to zebrafish, we re-classified 5 of these as pathogenic and a further 3 as likely pathogenic. We also added to the ABCA4 phenotypic spectrum seen with four known pathogenic variants (c.2161-2A>G; Leu296Cysfs*4; Arg1640Gln; and Pro1380Leu). CONCLUSIONS: This study expands the genotypic and phenotypic spectrum of ABCA4 disease-associated variants. By panel-based genetic testing, we identified 14 novel ABCA4 variants of which 8 were determined to be disease-causing or likely disease-causing. These methodologies could circumvent somewhat the need for labour intensive in vitro and in vivo assessments of novel ABCA4 variants.

3.
Mol Vis ; 29: 329-337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38264610

RESUMEN

Purpose: Autosomal recessive cone and cone-rod dystrophies (CD/CRD) are inherited forms of vison loss. Here, we report on and correlate the clinical phenotypes with the underlying genetic mutations. Methods: Clinical information was collected from subjects, including a family history with a chart review. They underwent a full ophthalmic examination, including best-corrected visual acuity, direct and indirect ophthalmoscopy, color vision testing, color fundus photography, contrast sensitivity, autofluorescence, and spectral domain-optical coherence tomography (SD-OCT), and full-field electroretinography. Next-generation panel-based genetic testing was used to identify DNA variants in subject buccal swab samples. Results: Genetic testing in two patients revealed three novel variants in the TTLL5 gene associated with CD/CRD: two missense variants (c.1433G>A;p.(Arg478Gln), c.241C>G;p.(Leu81Val), and one loss-of-function variant (c.2384_2387del;p.(Ala795Valfs*9). Based on in-silico analysis, structural modeling, and comparison to previously reported mutations, these novel variants are very likely to be disease-causing mutations. Combining retinal imaging with SD-OCT analysis, we observed an unusual sheen in the CD/CRD phenotypes. Conclusion: Based on the protein domain location of novel TTLL5 variants and the localization of TTLL5 to the connecting cilium, we conclude that the CD/CRD disease phenotype is characterized as a ciliopathy caused by protein tracking dysfunction. This initially affects cone photoreceptors, where photoreceptor cilia express a high level of TTLL5, but extends to rod photoreceptors over time. Fundus photography correlated with SD-OCT imaging suggests that the macular sheen characteristically seen with TTLL5 mutations derives from the photoreceptor's outer segments at the posterior pole.


Asunto(s)
Distrofia del Cono , Distrofias de Conos y Bastones , Distrofias Retinianas , Humanos , Células Fotorreceptoras Retinianas Conos , Tomografía de Coherencia Óptica , Tubulina (Proteína) , Fenotipo , Tirosina , Proteínas Portadoras
4.
J Med Genet ; 59(1): 46-55, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33257509

RESUMEN

Strabismus is a common condition, affecting 1%-4% of individuals. Isolated strabismus has been studied in families with Mendelian inheritance patterns. Despite the identification of multiple loci via linkage analyses, no specific genes have been identified from these studies. The current study is based on a seven-generation family with isolated strabismus inherited in an autosomal dominant manner. A total of 13 individuals from a common ancestor have been included for linkage analysis. Among these, nine are affected and four are unaffected. A single linkage signal has been identified at an 8.5 Mb region of chromosome 14q12 with a multipoint LOD (logarithm of the odds) score of 4.69. Disruption of this locus is known to cause FOXG1 syndrome (or congenital Rett syndrome; OMIM #613454 and *164874), in which 84% of affected individuals present with strabismus. With the incorporation of next-generation sequencing and in-depth bioinformatic analyses, a 4 bp non-coding deletion was prioritised as the top candidate for the observed strabismus phenotype. The deletion is predicted to disrupt regulation of FOXG1, which encodes a transcription factor of the Forkhead family. Suggestive of an autoregulation effect, the disrupted sequence matches the consensus FOXG1 and Forkhead family transcription factor binding site and has been observed in previous ChIP-seq studies to be bound by Foxg1 in early mouse brain development. Future study of this specific deletion may shed light on the regulation of FOXG1 expression and may enhance our understanding of the mechanisms contributing to strabismus and FOXG1 syndrome.


Asunto(s)
Factores de Transcripción Forkhead/genética , Proteínas del Tejido Nervioso/genética , Síndrome de Rett/genética , Eliminación de Secuencia , Estrabismo/genética , Adolescente , Anciano , Anciano de 80 o más Años , Animales , Ligamiento Genético , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Linaje , Secuenciación del Exoma , Secuenciación Completa del Genoma , Adulto Joven
5.
Hum Mol Genet ; 28(5): 778-795, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388224

RESUMEN

Mutations in KIF14 have previously been associated with either severe, isolated or syndromic microcephaly with renal hypodysplasia (RHD). Syndromic microcephaly-RHD was strongly reminiscent of clinical ciliopathies, relating to defects of the primary cilium, a signalling organelle present on the surface of many quiescent cells. KIF14 encodes a mitotic kinesin, which plays a key role at the midbody during cytokinesis and has not previously been shown to be involved in cilia-related functions. Here, we analysed four families with fetuses presenting with the syndromic form and harbouring biallelic variants in KIF14. Our functional analyses showed that the identified variants severely impact the activity of KIF14 and likely correspond to loss-of-function mutations. Analysis in human fetal tissues further revealed the accumulation of KIF14-positive midbody remnants in the lumen of ureteric bud tips indicating a shared function of KIF14 during brain and kidney development. Subsequently, analysis of a kif14 mutant zebrafish line showed a conserved role for this mitotic kinesin. Interestingly, ciliopathy-associated phenotypes were also present in mutant embryos, supporting a potential direct or indirect role for KIF14 at cilia. However, our in vitro and in vivo analyses did not provide evidence of a direct role for KIF14 in ciliogenesis and suggested that loss of kif14 causes ciliopathy-like phenotypes through an accumulation of mitotic cells in ciliated tissues. Altogether, our results demonstrate that KIF14 mutations result in a severe syndrome associating microcephaly and RHD through its conserved function in cytokinesis during kidney and brain development.


Asunto(s)
Anomalías Congénitas/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Enfermedades Renales/congénito , Riñón/anomalías , Cinesinas/genética , Mutación con Pérdida de Función , Microcefalia/genética , Proteínas Oncogénicas/genética , Animales , Anomalías Congénitas/metabolismo , Citocinesis/genética , Modelos Animales de Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Genes Letales , Estudios de Asociación Genética/métodos , Sitios Genéticos , Humanos , Riñón/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Masculino , Microcefalia/metabolismo , Microcefalia/patología , Proteínas Oncogénicas/química , Proteínas Oncogénicas/metabolismo , Linaje , Fenotipo , Relación Estructura-Actividad , Pez Cebra
6.
Hum Genet ; 138(8-9): 1019-1026, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30603775

RESUMEN

Over the last three decades, genetic studies have made great strides toward the identification of genes and genetic mechanisms underlying congenital disorders of the eye. However, despite the vast knowledge available this has not translated into treatments to prevent or repair the damage in the clinical setting. Recently, new research in technologies, such as tissue regeneration, next generation designer drugs, and genome editing, have become available for some genetic disorders that might be applicable to congenital ocular diseases in the near future. Here, we provide an overview of the emerging therapeutic modalities and the future prospects they hold for debilitating ocular defects.


Asunto(s)
Oftalmopatías/genética , Ojo/fisiopatología , Enfermedades Genéticas Congénitas/genética , Animales , Edición Génica/métodos , Humanos , Regeneración/genética
7.
Hum Genet ; 138(8-9): 865-880, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31073883

RESUMEN

Ocular coloboma is an uncommon, but often severe, sight-threatening condition that can be identified from birth. This congenital anomaly is thought to be caused by maldevelopment of optic fissure closure during early eye morphogenesis. It has been causally linked to both inherited (genetic) and environmental influences. In particular, as a consequence of work to identify genetic causes of coloboma, new molecular pathways that control optic fissure closure have now been identified. Many more regulatory mechanisms still await better understanding to inform on the development of potential therapies for patients with this malformation. This review provides an update of known coloboma genes, the pathways they influence and how best to manage the condition. In the age of precision medicine, determining the underlying genetic cause in any given patient is of high importance.


Asunto(s)
Coloboma/genética , Ojo/fisiopatología , Animales , Genética , Humanos , Morfogénesis/genética
8.
Hum Mol Genet ; 25(8): 1501-16, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27008885

RESUMEN

The molecular signaling leading to cell death in hereditary neurological diseases such as retinal degeneration is incompletely understood. Previous neuroprotective studies have focused on apoptotic pathways; however, incomplete suppression of cell death with apoptosis inhibitors suggests that other mechanisms are at play. Here, we report that different signaling pathways are activated in rod and cone photoreceptors in the P23H rhodopsin mutant rat, a model representing one of the commonest forms of retinal degeneration. Up-regulation of the RIP1/RIP3/DRP1 axis and markedly improved survival with necrostatin-1 treatment highlighted necroptosis as a major cell-death pathway in degenerating rod photoreceptors. Conversely, up-regulation of NLRP3 and caspase-1, expression of mature IL-1ß and IL-18 and improved cell survival with N-acetylcysteine treatment suggested that inflammasome activation and pyroptosis was the major cause of cone cell death. This was confirmed by generation of the P23H mutation on an Nlrp3-deficient background, which preserved cone viability. Furthermore, Brilliant Blue G treatment inhibited inflammasome activation, indicating that the 'bystander cell death' phenomenon was mediated through the P2RX7 cell-surface receptor. Here, we identify a new pathway in cones for bystander cell death, a phenomenon important in development and disease in many biological systems. In other retinal degeneration models different cell-death pathways are activated, which suggests that the particular pathways that are triggered are to some extent genotype-specific. This also implies that neuroprotective strategies to limit retinal degeneration need to be customized; thus, different combinations of inhibitors will be needed to target the specific pathways in any given disease.


Asunto(s)
Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/citología , Rodopsina/genética , Animales , Efecto Espectador/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Supervivencia Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Imidazoles/farmacología , Indoles/farmacología , Ratas , Ratas Transgénicas , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
9.
Exp Eye Res ; 173: 138-147, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29775563

RESUMEN

The fovea is an anatomical specialization of the central retina containing closely packed cone-photoreceptors providing an area of high acuity vision in humans and primates. Despite its key role in the clarity of vision, little is known about the molecular and cellular basis of foveal development, due to the absence of a foveal structure in commonly used laboratory animal models. Of the amniotes the retina in birds of prey and some reptiles do exhibit a typical foveal structure, but they have not been studied in the context of foveal development due to lack of availability of embryonic tissue, lack of captive breeding programs, and limited genomic information. However, the genome for the diurnal bifoveate reptile species Anolis carolinensis (green anole) was recently published and it is possible to collect embryos from this species in captivity. Here, we tested the feasibility of using the anole as a model to study foveal development. Eyes were collected at various stages of development for histological analysis, immunofluorescence, and apoptosis. We show that at embryonic stage (ES) 10 there is peak ganglion cell density at the incipient central foveal region and a single row of cone photoreceptor nuclei. At ES17 the foveal pit begins to form and at this stage there are 3-4 rows of cone nuclei. Post-hatching a further increase in cone density and lengthening of inner and outer segments is observed. A yellowish pigment was seen in the adult central foveal region, but not in the temporal fovea. At ES14 Pax6 was localized across the entire retina, but was more prominent in the ganglion cell layer (GCL) and the part of the inner nuclear layer (INL) containing amacrine cell bodies. However, at ES17 Pax6 expression in the ganglion cells of the central retina was markedly reduced. Bioinformatic analysis revealed that 86% of human candidate foveal hypoplasia genes had an orthologous gene or DNA sequence in the green anole. These findings provide the first insight into foveal morphogenesis in the green anole and suggest that it could be a very useful model for investigating the molecular signals driving foveal development, and thus inform on human foveal development and disease.


Asunto(s)
Fóvea Central/embriología , Fóvea Central/crecimiento & desarrollo , Lagartos , Modelos Animales , Morfogénesis/fisiología , Animales , Recuento de Células , Opsinas de los Conos/metabolismo , Femenino , Etiquetado Corte-Fin in Situ , Microscopía Confocal , Factor de Transcripción PAX6/metabolismo , Retina/citología , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo
10.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 60-67, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27771509

RESUMEN

The Pax6 transcription factor is essential for development of the brain, eye, olfactory and endocrine systems. Haploinsufficiency of PAX6 in humans and mice causes the congenital condition aniridia, with defects in each of these organs and systems. Identification of the PAX6 transcription networks driving normal development is therefore critical in understanding the pathophysiology observed with loss-of-function defects. Here we have focused on identification of the downstream targets for Pax6 in the developing iris and ciliary body, where we used laser capture microdissection in mouse eyes from E12.5-E16.5, followed by chromatin immunoprecipitation, promoter-reporter assays and immunohistochemistry. We identified 6 differentially expressed genes between wildtype and Pax6 heterozygous mouse tissues and demonstrated that Bmp4, Tgfß2, and Foxc1 were direct downstream targets of Pax6 in developing iris/ciliary body. These results improve our understanding of how mutations in Bmp4, Tgfß2, and Foxc1 result in phenocopies of the aniridic eye disease and provide possible targets for therapeutic intervention.


Asunto(s)
Aniridia/genética , Cuerpo Ciliar/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Iris/crecimiento & desarrollo , Factor de Transcripción PAX6/genética , Animales , Aniridia/metabolismo , Aniridia/patología , Cuerpo Ciliar/metabolismo , Cuerpo Ciliar/patología , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Iris/metabolismo , Iris/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Factor de Transcripción PAX6/metabolismo , Regiones Promotoras Genéticas
11.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 347-353, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27902929

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons. Cell death in ALS and in general was previously believed to exist as a dichotomy between apoptosis and necrosis. Most research investigating cell death mechanisms in ALS was conducted before the discovery of programmed necrosis thus did not use selective cell death pathway-specific markers. Recently, a new form of programmed cell death, termed "necroptosis", has been characterized and has been recently implicated in ALS as a primary mechanism driving motor neuron cell death in different forms of ALS. The present review is aimed at summarizing cell death pathways that are currently implicated in ALS and highlighting the emerging evidence on necroptosis as a major driver of motor neuron cell death.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Necrosis/patología , Neuronas/patología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Muerte Celular , Humanos , Necrosis/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Transducción de Señal
12.
Mol Vis ; 22: 718-33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27390514

RESUMEN

PURPOSE: X-linked retinoschisis (XLRS) is juvenile-onset macular degeneration caused by haploinsufficiency of the extracellular cell adhesion protein retinoschisin (RS1). RS1 mutations can lead to either a non-functional protein or the absence of protein secretion, and it has been established that extracellular deficiency of RS1 is the underlying cause of the phenotype. Therefore, we hypothesized that an ex vivo gene therapy strategy could be used to deliver sufficient extracellular RS1 to reverse the phenotype seen in XLRS. Here, we used adipose-derived, syngeneic mesenchymal stem cells (MSCs) that were genetically modified to secrete human RS1 and then delivered these cells by intravitreal injection to the retina of the Rs1h knockout mouse model of XLRS. METHODS: MSCs were electroporated with two transgene expression systems (cytomegalovirus (CMV)-controlled constitutive and doxycycline-induced Tet-On controlled inducible), both driving expression of human RS1 cDNA. The stably transfected cells, using either constitutive mesenchymal stem cell (MSC) or inducible MSC cassettes, were assayed for their RS1 secretion profile. For single injection studies, 100,000 genetically modified MSCs were injected into the vitreous cavity of the Rs1h knockout mouse eye at P21, and data were recorded at 2, 4, and 8 weeks post-injection. The control groups received either unmodified MSCs or vehicle injection. For the multiple injection studies, the mice received intravitreal MSC injections at P21, P60, and P90 with data collection at P120. For the single- and multiple-injection studies, the outcomes were measured with electroretinography, optokinetic tracking responses (OKT), histology, and immunohistochemistry. RESULTS: Two lines of genetically modified MSCs were established and found to secrete RS1 at a rate of 8 ng/million cells/day. Following intravitreal injection, RS1-expressing MSCs were found mainly in the inner retinal layers. Two weeks after a single injection of MSCs, the area of the schisis cavities was reduced by 65% with constitutive MSCs and by 83% with inducible MSCs, demonstrating improved inner nuclear layer architecture. This benefit was maintained up to 8 weeks post-injection and corresponded to a significant improvement in the electroretinogram (ERG) b-/a-wave ratio at 8 weeks (2.6 inducible MSCs; 1.4 untreated eyes, p<0.05). At 4 months after multiple injections, the schisis cavity areas were reduced by 78% for inducible MSCs and constitutive MSCs, more photoreceptor nuclei were present (700/µm constitutive MSC; 750/µm inducible MSC; 383/µm untreated), and the ERG b-wave was significantly improved (threefold higher with constitutive MSCs and twofold higher with inducible MSCs) compared to the untreated control group. CONCLUSIONS: These results establish that extracellular delivery of RS1 rescues the structural and functional deficits in the Rs1h knockout mouse model and that this ex vivo gene therapy approach can inhibit progression of disease. This proof-of-principle work suggests that other inherited retinal degenerations caused by a deficiency of extracellular matrix proteins could be targeted by this strategy.


Asunto(s)
Proteínas del Ojo/genética , Regulación de la Expresión Génica/fisiología , Terapia Genética , Retinosquisis/terapia , Animales , Citomegalovirus/genética , Modelos Animales de Enfermedad , Electroporación , Electrorretinografía , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos , Inyecciones Intravítreas , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/fisiología , Retinosquisis/genética , Retinosquisis/fisiopatología , Transfección
13.
Cell Mol Life Sci ; 72(10): 1931-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25651836

RESUMEN

Premature termination codons (PTCs) are caused by nonsense mutations and this leads to either degradation of the mutant mRNA template by nonsense-mediated decay (NMD) or the production of a non-functional, truncated polypeptide. PTCs contribute significantly to inherited human diseases including ocular disorders. Nonsense suppression therapy allows readthrough of PTCs, thereby rescuing the production of a full-length functional protein. In this review, we highlight the mechanisms that are involved in discriminating normal translation termination from premature termination codons; the current understanding of nonsense-mediated mRNA decay models (NMD); the association and crosstalk between PTC and the underlying dynamic NMD process; and the suppression therapies that have been employed in nonsense-medicated ocular disease models. Defining the mechanistic complexity of PTC and NMD will be important to improve treatments of the numerous genetic disorders caused by PTC mutations.


Asunto(s)
Codón sin Sentido/genética , Enfermedades Hereditarias del Ojo/tratamiento farmacológico , Enfermedades Hereditarias del Ojo/genética , Modelos Genéticos , Degradación de ARNm Mediada por Codón sin Sentido/fisiología , Aminoglicósidos/farmacología , Aminoglicósidos/uso terapéutico , Humanos , Luciferasas , Degradación de ARNm Mediada por Codón sin Sentido/efectos de los fármacos , Oxadiazoles/metabolismo
14.
Hum Mol Genet ; 21(10): 2357-69, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22357656

RESUMEN

Tissue fusion is an essential morphogenetic mechanism in development, playing a fundamental role in developing neural tube, palate and the optic fissure. Disruption of genes associated with the tissue fusion can lead to congenital malformations, such as spina bifida, cleft lip/palate and ocular coloboma. For instance, the Pax2 transcription factor is required for optic fissure closure, although the mechanism of Pax2 action leading to tissue fusion remains elusive. This lack of information defining how transcription factors drive tissue morphogenesis at the cellular level is hampering new treatments options. Through loss- and gain-of-function analysis, we now establish that pax2 in combination with vax2 directly regulate the fas-associated death domain (fadd) gene. In the presence of fadd, cell proliferation is restricted in the developing eye through a caspase-dependent pathway. However, the loss of fadd results in a proliferation defect and concomitant activation of the necroptosis pathway through RIP1/RIP3 activity, leading to an abnormal open fissure. Inhibition of RIP1 with the small molecule drug necrostatin-1 rescues the pax2 eye fusion defect, thereby overcoming the underlying genetic defect. Thus, fadd has an essential physiological function in protecting the developing optic fissure neuroepithelium from RIP3-dependent necroptosis. This study demonstrates the molecular hierarchies that regulate a cellular switch between proliferation and the apoptotic and necroptotic cell death pathways, which in combination drive tissue morphogenesis. Furthermore, our data suggest that future therapeutic strategies may be based on small molecule drugs that can bypass the gene defects causing common congenital tissue fusion defects.


Asunto(s)
Ojo/crecimiento & desarrollo , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Factor de Transcripción PAX2/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Proliferación Celular , Inmunoprecipitación de Cromatina , Embrión no Mamífero/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/genética , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Factor de Transcripción PAX2/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
15.
Ophthalmic Genet ; : 1-5, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853699

RESUMEN

INTRODUCTION: In addition to sensorineural hearing loss, Waardenburg Syndrome (WS) may present with variable pigmentation of skin and choroid, which may simulate other life-threating conditions (e.g. melanoma). CASE REPORT: Two siblings ostensibly presented with unilateral choroidal pigmentary abnormalities concerning for choroidal tumour. Serial ophthalmic examination documented no lesion growth (base or height) whilst the apparent syndromic features (i.e. iris hypochromia, profound sensorineural hearing loss, SNHL), family history (autosomal dominant inheritance) and positive genetic testing (pathogenic MITF variant) led to a revised diagnosis of Waardenburg Syndrome type 2A. CONCLUSION: Sectoral preservation of choroidal pigmentation in WS is rarely associated with choroidal malignancy. Awareness of syndromic features (e.g. SNHL) and access to genetic testing may facilitate early accurate diagnosis (i.e. allay concern for malignancy), enable treatment of modifiable features (e.g. SNHL) and identify other affected relatives.

16.
IEEE Trans Magn ; 49(1): 389-393, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24976643

RESUMEN

Mesenchymal stem cells (MSCs) have well-established paracrine effects that are proving to be therapeutically useful. This potential is based on the ability of MSCs to secrete a range of neuroprotective and anti-inflammatory molecules. Previous work in our laboratory has demonstrated that intravenous injection of MSCs, treated with superparamagnetic iron oxide nanoparticle fluidMAG-D resulted in enhanced levels of glial-derived neurotrophic factor, ciliary neurotrophic factor, hepatocyte growth factor and interleukin-10 in the dystrophic rat retina. In this present study we investigated whether the concentration of fluidMAG-D in cell culture media affects the secretion of these four molecules in vitro. In addition, we assessed the effect of fluidMAG-D concentration on retinoschisin secretion from genetically modified MSCs. ELISA-assayed secretion of these molecules was measured using escalating concentrations of fluidMAG-D which resulted in MSC iron loads of 0, 7, 120, or 274 pg iron oxide per cell respectively. Our results demonstrated glial-derived neurotrophic factor and hepatocyte growth factor secretion was significantly decreased but only at the 96 hour's time-point whereas no statistically significant effect was seen with ciliary neurotrophic factor secretion. Whereas no effect was observed on culture media concentrations of retinoschisin with increasing iron oxide load, a statistically significant increase in cell lysate retinoschisin concentration (p = 0.01) was observed suggesting that increasing fluidMAG-D concentration did increase retinoschisin production but this did not lead to greater secretion. We hypothesize that higher concentrations of iron-oxide nanoparticle fluidMAG-D have an effect on the innate ability of MSCs to secrete therapeutically useful molecules and also on secretion from genetically modified cells. Further work is required to verify these in vitro finding using in vivo model systems.

17.
Future Med Chem ; 15(8): 651-659, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37170865

RESUMEN

Aim: To discover derivatives of the anthelmintic drug levamisole, which has been reported to possess immune-modulatory properties, as treatments for amyotrophic lateral sclerosis (ALS), which has been suggested to be in part an autoimmune disease. Results: We have synthesized ten analogs of the racemic version of levamisole, tetramisole, as well as eleven analogs on a related system. All of the analogs have been tested for their ability to affect the response of five ALS-relevant cytokines. Conclusion: We have discovered a number of interesting derivatives that have encouraging cytokine response data and good metabolic stability, with the potential to have a positive impact on ALS either as single agents, or in combination.


Aim: To discover derivatives of the antiparasitic worm drug levamisole, which has been reported to be able to modulate the immune response, as treatments for amyotrophic lateral sclerosis (ALS), which has been suggested to be in part an autoimmune disease. Results: We have synthesized ten analogs of a variation of levamisole, tetramisole, as well as 11 analogs on a related system. All of the analogs have been tested for their ability to affect the response of five ALS-relevant immune-modulatory substances (cytokines). Conclusion: We have discovered a number of interesting derivatives that have encouraging cytokine response data and good metabolic stability, with the potential to have a positive impact on ALS either as single agents, or in combination.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Levamisol/farmacología , Levamisol/uso terapéutico , Citocinas/metabolismo , Tetramisol/uso terapéutico
18.
Can J Ophthalmol ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37678418

RESUMEN

OBJECTIVE: To evaluate the success of diagnostic genetic testing in inherited retinal dystrophy (IRD) patients in the clinical setting. DESIGN: Retrospective cohort analysis. PARTICIPANTS: A total of 446 consecutive participants from diverse ethnic backgrounds living in western Canada. METHODS: Clinical information was collected from participants, including family history, and they underwent a full ophthalmic examination with chart review. Those with a suspected IRD were offered panel-based genetic testing of 351 genes between March 1, 2019, and February 28, 2022. The main outcome measure was effect of the genetic testing results on clinical diagnosis. RESULTS: Genetic testing established a conclusive molecular diagnosis in 249 of 446 cases (55.8%), a clearly negative result in 90 of 446 cases (20.1%), and an inconclusive diagnosis in 108 of 446 cases (24.2%). Conclusive disease-causing variants were identified in 69 genes, and the most commonly affected genes were ABCA4 (31 variants), USH2A (25 variants), and RPGR (19 variants). The inconclusive group included likely novel autosomal dominant variants or a pathogenic variant with a variant of uncertain significance in the same gene for a recessive phenotype. Notably, an inconclusive molecular genetic diagnosis was seen in as many as 47.3% of East Asian participants with an outer retinal dystrophy. CONCLUSIONS: This study represents the largest review of molecular genetic testing in IRDs in Canada. That negative or inconclusive results obtained in approximately 45% of cases demonstrates that there is an important need for new research into molecular genetic causes of IRDs. This is particularly true in addressing the problem of interpreting a variant of uncertain significance in ethnic minorities.

19.
Ophthalmic Res ; 47(1): 32-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21691141

RESUMEN

AIMS: We have previously shown the benefits of cell-based delivery of neuroprotection in a rodent model of retinitis pigmentosa (RP). In order to maximise the effectiveness of this approach, we hypothesised that this could be augmented by combination with an aminoglycoside known to limit the abnormal RNA translation seen in this model. METHODS: A rhodopsin TgN S334ter-4 rat model of RP underwent daily subcutaneous injection of 12.5 µg/g gentamicin from postnatal day 5 (P5). At P21, selected rats also underwent intravitreal injection of cells genetically engineered to oversecrete glial cell-derived neurotrophic factor. Histological imaging was undertaken to evaluate photoreceptor survival at P70 and compared with images from untreated TgN S334ter-4 rats and control Sprague-Dawley rats. RESULTS: Statistically significant (p < 0.05) improvements in outer retinal indices were seen with this combination strategy when compared with results in rats treated with individual therapies alone. This improvement was most apparent in the peripheral retina, where the greatest degeneration was observed. CONCLUSIONS: We have shown that the combination of neuroprotection plus aminoglycoside read-through in an animal model of retinal degeneration improved the histological appearance of the retina such that it was statistically indistinguishable from unaffected controls. Further functional and longitudinal studies of this approach are warranted.


Asunto(s)
Modelos Animales de Enfermedad , Regulación de la Expresión Génica/fisiología , Terapia Genética , Gentamicinas/uso terapéutico , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Inhibidores de la Síntesis de la Proteína/uso terapéutico , Retinitis Pigmentosa/terapia , Animales , Recuento de Células , Supervivencia Celular , Terapia Combinada , Células Madre Embrionarias/metabolismo , Ensayo de Inmunoadsorción Enzimática , Vectores Genéticos , Gentamicinas/farmacocinética , Inyecciones Subcutáneas , Inhibidores de la Síntesis de la Proteína/farmacocinética , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Retinitis Pigmentosa/genética , Transfección
20.
Mol Vis ; 17: 1473-84, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21677791

RESUMEN

PURPOSE: We recently demonstrated that molecular therapy using aminoglycosides can overcome the underlying genetic defect in two zebrafish models of ocular coloboma and showed abnormal cell death to be a key feature associated with the optic fissure closure defects. In further studies to identify molecular therapies for this common congenital malformation, we now examine the effects of anti-apoptotic compounds in zebrafish models of ocular coloboma in vivo. METHODS: Two ocular coloboma zebrafish lines (pax2.1/noi(tu29a) and lamb1/gup(m189)) were exposed to diferuloylmethane (curcumin) or benzyloxycarbonyl-Val-Ala-Asp(Ome)-fluoromethylketone (zVAD-fmk; a pan-caspase inhibitor) for up to 8 days post-fertilization. The effects of these compounds were assessed by morphology, histology, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and western blot analysis. RESULTS: The size of the coloboma in gup zebrafish mutants treated with diferuloylmethane was greatly reduced. In treated mutants a reduction in TUNEL staining and a 67% decrease in activated caspase-3 protein were observed. The release of cytochrome c from the mitochondria into the cytosol was reduced fourfold by in vivo diferuloylmethane treatment, suggesting that the drug was acting to inhibit the intrinsic apoptotic pathway. Inhibition of caspases directly with zVAD-fmk also resulted in a similar reduction in coloboma phenotype. Treatment with either diferuloylmethane or zVAD-fmk resulted in a statistically significant 1.4 fold increase in length of survival of these mutant zebrafish (p<0.001), which normally succumb to the lethal genetic mutation. In contrast, the coloboma phenotype in noi zebrafish mutants did not respond to either diferuloylmethane or zVAD-fmk exposure, even though inhibition of apoptotic cell death was observed by a reduction in TUNEL staining. CONCLUSIONS: The differential sensitivity to anti-apoptotic agents in lamb1-deficient and pax2.1-deficient zebrafish models, suggests that apoptotic cell death is not a final common pathway in all ocular coloboma genotypes. When considering anti-cell death therapies for ocular colobomatous defects attention should be paid to the genotype under investigation.


Asunto(s)
Muerte Celular/genética , Coloboma , Curcumina/farmacología , Ojo/metabolismo , Pez Cebra/genética , Clorometilcetonas de Aminoácidos/farmacología , Animales , Western Blotting , Caspasa 3/genética , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Coloboma/embriología , Coloboma/genética , Coloboma/metabolismo , Coloboma/patología , Citocromos c/análisis , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Embrión no Mamífero , Ojo/embriología , Ojo/patología , Variación Genética , Etiquetado Corte-Fin in Situ , Longevidad/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mutación , Fenotipo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA