Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37760576

RESUMEN

Colorectal cancer (CRC) colonoscopic surveillance is effective but burdensome. Circulating tumor DNA (ctDNA) analysis has emerged as a promising, minimally invasive tool for disease detection and management. Here, we assessed which ctDNA assay might be most suitable for a ctDNA-based CRC screening/surveillance blood test. In this prospective, proof-of-concept study, patients with colonoscopies for Lynch surveillance or the National Colorectal Cancer screening program were included between 7 July 2019 and 3 June 2022. Blood was drawn, and if advanced neoplasia (adenoma with villous component, high-grade dysplasia, ≥10 mm, or CRC) was detected, it was analyzed for chromosomal copy number variations, single nucleotide variants, and genome-wide methylation (MeD-seq). Outcomes were compared with corresponding patients' tissues and the MeD-seq results of healthy blood donors. Two Lynch carriers and eight screening program patients were included: five with CRC and five with advanced adenomas. cfDNA showed copy number variations and single nucleotide variants in one patient with CRC and liver metastases. Eight patients analyzed with MeD-seq showed clustering of Lynch-associated and sporadic microsatellite instable lesions separate from microsatellite stable lesions, as did healthy blood donors. In conclusion, whereas copy number changes and single nucleotide variants were only detected in one patient, cfDNA methylation profiles could discriminate all microsatellite instable advanced neoplasia, rendering this tool particularly promising for LS surveillance. Larger studies are warranted to validate these findings.

2.
Stem Cells Transl Med ; 9(4): 478-490, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32163234

RESUMEN

Autosomal-dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, leading to kidney failure in most patients. In approximately 85% of cases, the disease is caused by mutations in PKD1. How dysregulation of PKD1 leads to cyst formation on a molecular level is unknown. Induced pluripotent stem cells (iPSCs) are a powerful tool for in vitro modeling of genetic disorders. Here, we established ADPKD patient-specific iPSCs to study the function of PKD1 in kidney development and cyst formation in vitro. Somatic mutations are proposed to be the initiating event of cyst formation, and therefore, iPSCs were derived from cystic renal epithelial cells rather than fibroblasts. Mutation analysis of the ADPKD iPSCs revealed germline mutations in PKD1 but no additional somatic mutations in PKD1/PKD2. Although several somatic mutations in other genes implicated in ADPKD were identified in cystic renal epithelial cells, only few of these mutations were present in iPSCs, indicating a heterogeneous mutational landscape, and possibly in vitro cell selection before and during the reprogramming process. Whole-genome DNA methylation analysis indicated that iPSCs derived from renal epithelial cells maintain a kidney-specific DNA methylation memory. In addition, comparison of PKD1+/- and control iPSCs revealed differences in DNA methylation associated with the disease history. In conclusion, we generated and characterized iPSCs derived from cystic and healthy control renal epithelial cells, which can be used for in vitro modeling of kidney development in general and cystogenesis in particular.


Asunto(s)
Células Epiteliales/patología , Células Madre Pluripotentes Inducidas/patología , Riñón/patología , Riñón Poliquístico Autosómico Dominante/patología , Línea Celular , Reprogramación Celular , Metilación de ADN/genética , Análisis Mutacional de ADN , Epigénesis Genética , Humanos , Túbulos Renales/patología , Mutación/genética , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA