Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 36(30): 8815-8825, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32668905

RESUMEN

Coacervation is widely used in formulations to induce a beneficial character to the formulation, but nonequilibrium effects are often manifest. Electrophoretic NMR (eNMR), pulsed-gradient spin-echo NMR (PGSE-NMR), and small-angle neutron scattering (SANS) have been used to quantify the interaction between low molecular cationic poly(diallyldimethylammonium chloride) (PDADMAC) and the anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a model for the precursor state to such nonequilibrium processes. The NMR data show that, within the low surfactant concentration one-phase region, an increasing surfactant concentration leads to a reduction in the charge on the polymer and a collapse of its solution conformation, attaining minimum values coincident with the macroscopic phase separation boundary. Interpretation of the scattering data reveals how the rodlike polymer changes over the same surfactant concentration window, with no discernible fingerprint of micellar type aggregates, but rather with the emergence of disklike and lamellar structures. At the highest surfactant concentration, the emergence of a weak Bragg peak in both the polymer and surfactant scattering suggests these precursor disk and lamellar structures evolve into paracrystalline stacks which ultimately phase separate. Addition of the nonionic surfactant hexa(ethylene glycol) monododecyl ether (C12E6) to the system seems to have little effect on the PDADMAC/SDS interaction as determined by NMR, merely displacing the observed behavior to lower SDS concentrations, commensurate with the total SDS present in the system. In other words, PDADMAC causes the disruption of the mixed SDS/C12E6 micelle, leading to SDS-rich PDADAMC/surfactant complexes coexisting with C12E6-rich micelles in solution.

2.
Soft Matter ; 13(46): 8807-8815, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29139528

RESUMEN

Small-angle neutron scattering has been used to probe the interfacial structure of foams stabilised by small molecule surfactants at concentrations well below their critical micelle concentration. The data for wet foams showed a pronounced Q-4 dependence at low Q and noticeable inflexions over the mid Q range. These features were found to be dependent on the surfactant structure (mainly the alkyl chain length) with various inflexions across the measured Q range as a function of the chain length but independent of factors such as concentration and foam age/height. By contrast, foam stability (for C < CMC) was significantly different at this experimental range. Drained foams showed different yet equally characteristic features, including additional peaks attributed to the formation of classical micellar structures. Together, these features suggest the dynamic air-water interface is not as simple as often depicted, indeed the data have been successfully described by a model consisting paracrystalline stacks (multilayer) of adsorbed surfactant layers; a structure that we believe is induced by the dynamic nature of the air-water interface in a foam.

3.
Soft Matter ; 12(15): 3612-21, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26963370

RESUMEN

Some functionalised dipeptides can form hydrogels when salts are added to solutions at high pH. We have used surface tension, conductivity, rheology, optical, confocal and scanning electron microscopy, (1)H NMR and UV-Vis spectroscopy measurements to characterise fully the phase behaviour of solutions of one specific gelator, 2NapFF, at 25 °C at pH 10.5. We show that this specific naphthalene-dipeptide undergoes structural transformations as the concentration is increased, initially forming spherical micelles, then worm-like micelles, followed by association of these worm-like micelles. On addition of a calcium salt, gels are generally formed as long as worm-like micelles are initially present in solution, although there are structural re-organisations that occur at lower concentrations, allowing gelation at lower than expected concentration. Using IR and SANS, we show the differences between the structures present in the solution and hydrogel phases.


Asunto(s)
Dipéptidos/química , Hidrogeles/química , Micelas , Sales (Química)/química , Concentración de Iones de Hidrógeno , Naftalenos/química
4.
J Virol ; 88(3): 1830-3, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24257620

RESUMEN

Several transgenic mouse models have been developed which facilitate the transmission of chronic wasting disease (CWD) of cervids and allow prion strain discrimination. The present study was designed to assess the susceptibility of the prototypic mouse line, Tg(CerPrP)1536(+/-), to bovine spongiform encephalopathy (BSE) prions, which have the ability to overcome species barriers. Tg(CerPrP)1536(+/-) mice challenged with red deer-adapted BSE resulted in 90% to 100% attack rates, and BSE from cattle failed to transmit, indicating agent adaptation in the deer.


Asunto(s)
Ciervos/metabolismo , Modelos Animales de Enfermedad , Encefalopatía Espongiforme Bovina/metabolismo , Ratones , Priones/metabolismo , Enfermedad Debilitante Crónica/metabolismo , Animales , Bovinos , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Susceptibilidad a Enfermedades , Encefalopatía Espongiforme Bovina/patología , Encefalopatía Espongiforme Bovina/transmisión , Femenino , Masculino , Ratones Transgénicos , Especificidad de la Especie , Enfermedad Debilitante Crónica/patología , Enfermedad Debilitante Crónica/transmisión
5.
Langmuir ; 31(30): 8469-77, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26131846

RESUMEN

A series of dumbbell-shaped nanocomposite materials of poly(dimethylsiloxanes) (PDMSs) and polyhedral oligomeric silsesquioxanes (POSSs) were synthesized through hydrosilylation reactions of allyl- and vinyl-POSS and hydride-terminated PDMS. The chemical structures of the dumbbell-shaped materials, so-called POSS-PDMS-POSS triblocks, were characterized by (1)H NMR and FT-IR spectroscopy. The molecular weights of the triblock polymers were determined by gel permeation chromatography (GPC). Their size was analyzed by small-angle neutron scattering (SANS) and pulsed-field gradient stimulated echo (PFG STE) NMR experiments. The impact of POSS on the molecular mobility of the PDMS middle chain was observed by using (1)H spin-spin (T2) relaxation NMR. In contrast to the PDMS melts, the triblocks showed an increase in mobility with increasing molecular weight over the range studied due to the reduced relative concentration of constraints imposed by the end-tethered nanoparticles. The triblock systems were used to compare the impact of tethered nanoparticles on the mobility of the linear component compared to the mobility of the polymer in conventional blended nanocomposites. The tethered nanoparticles were found to provide more reinforcement than physically dispersed particles especially at high molecular weights (low particle concentration). The physical blends showed an apparent percolation threshold behavior.

6.
Soft Matter ; 11(5): 927-35, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25516486

RESUMEN

Gels can be formed by dissolving Fmoc-diphenylalanine (Fmoc-PhePhe or FmocFF) in an organic solvent and adding water. We show here that the choice and amount of organic solvent allows the rheological properties of the gel to be tuned. The differences in properties arise from the microstructure of the fibre network formed. The organic solvent can then be removed post-gelation, without significant changes in the rheological properties. Gels formed using acetone are meta-stable and crystals of FmocFF suitable for X-ray diffraction can be collected from this gel.

7.
Soft Matter ; 10(17): 3003-8, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24695843

RESUMEN

Small-angle neutron scattering was used to probe the interfacial structure of nitrogen-in-water foams created using a series of tri-block polymeric surfactants of the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (EOx-POy-EOx) range, from which the nature of the polymeric interface could be characterised. The data follow a pronounced Q(-4) decay, along with a number of inflexions and weak but well-defined peaks. These characteristics were well-described by a model embodying paracrystalline stacks of adsorbed polymer layers, whose formation is induced by the presence of the air-water interface, adsorbed at the flat air-water (film lamellae) interface. A minimum of approximately five paracrystalline polymer layers of thickness of the order of 85-160 Å, interspersed with somewhat thicker (400 Å) films of continuous aqueous phase were found to best fit the data. The thickness of the layer (L) was shown to follow a relationship predicted by anchor block dominated polymer adsorption theories from non-selective solvents, L ∼ EO(1)PO(1/3). The insight gained from these studies should permit a more rational design of polymeric stabilisers for hydrophilic polyurethane foams.

8.
Emerg Infect Dis ; 19(11): 1731-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24188521

RESUMEN

Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.


Asunto(s)
Expresión Génica , Priones/genética , Scrapie/genética , Scrapie/transmisión , Animales , Encéfalo/metabolismo , Encéfalo/patología , Bovinos , Encefalopatía Espongiforme Bovina/metabolismo , Encefalopatía Espongiforme Bovina/patología , Humanos , Ratones , Ratones Transgénicos , Priones/metabolismo , Ovinos , Especificidad de la Especie
9.
J Gen Virol ; 94(Pt 11): 2577-2586, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23761404

RESUMEN

Development of transgenic mouse models expressing heterologous prion protein (PrP) has facilitated and advanced in vivo studies of prion diseases affecting humans and animals. Here, novel transgenic mouse lines expressing a chimaeric murine/ovine (Mu/Ov) PrP transgene, including amino acid residues alanine, histidine and glutamine at ovine polymorphic codons 136, 154 and 171 (A136H154Q171), were generated to provide a means of assessing the susceptibility of the ovine AHQ allele to ruminant prion diseases in an in vivo model. Transmission studies showed that the highest level of transgene overexpression, in Tg(Mu/OvPrP(AHQ))EM16 (EM16) mice, conferred high susceptibility to ruminant prions. Highly efficient primary transmission of atypical scrapie from sheep was shown, irrespective of donor sheep PrP genotype, with mean incubation periods (IPs) of 154­178 days post-inoculation (p.i.), 100% disease penetrance and early Western blot detection of protease-resistant fragments (PrP(res)) of the disease-associated isoform, PrP(Sc), in EM16 brain from 110 days p.i. onwards. EM16 mice were also highly susceptible to classical scrapie and bovine spongiform encephalopathy (BSE), with mean IPs 320 and 246 days faster, respectively, than WT mice. Primary passage of atypical scrapie, classical scrapie and BSE showed that the PrP(res) profiles associated with disease in the natural host were faithfully maintained in EM16 mice, and were distinguishable based on molecular masses, antibody reactivities and glycoform percentages. Immunohistochemistry was used to confirm PrP(Sc) deposition in brain sections from terminal phase transmissible spongiform encephalopathy-challenged EM16 mice. The findings indicate that EM16 mice represent a suitable bioassay model for detection of atypical scrapie infectivity and offer the prospect of differentiation of ruminant prions.


Asunto(s)
Ratones Transgénicos/metabolismo , Enfermedades por Prión/metabolismo , Enfermedades por Prión/transmisión , Priones/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Rumiantes/metabolismo , Regulación hacia Arriba , Animales , Encéfalo/metabolismo , Encéfalo/patología , Bovinos , Encefalopatía Espongiforme Bovina/metabolismo , Encefalopatía Espongiforme Bovina/transmisión , Humanos , Ratones , Priones/genética , Proteínas Recombinantes de Fusión/genética , Rumiantes/genética , Scrapie/metabolismo , Scrapie/transmisión , Ovinos , Transgenes
10.
J Gen Virol ; 91(Pt 8): 2132-2138, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20392900

RESUMEN

Twenty-four atypical scrapie cases from sheep with different prion protein genotypes from Great Britain were transmitted to transgenic tg338 and/or TgshpXI mice expressing sheep PrP alleles, but failed to transmit to wild-type mice. Mean incubation periods were 200-300 days in tg338 mice and 300-500 days in TgshpXI mice. Survival times in C57BL/6 and VM/Dk mice were >700 days. Western blot analysis of mouse brain samples revealed similar multi-band, protease-resistant prion protein (PrP(res)) profiles, including an unglycosylated band at approximately 8-11 kDa, which was shown by antibody mapping to correspond to the approximately 93-148 aa portion of the PrP molecule. In transgenic mice, the incubation periods, Western blot PrP(res) profiles, brain lesion profiles and abnormal PrP (PrP(Sc)) distribution patterns produced by the Great Britain atypical scrapie isolates were similar and compatible with the biological characteristics of other European atypical scrapie or Nor98 cases.


Asunto(s)
Scrapie/transmisión , Enfermedades de las Ovejas/transmisión , Animales , Western Blotting , Encéfalo/patología , Histocitoquímica , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Peso Molecular , Priones/química , Priones/aislamiento & purificación , Ovinos , Análisis de Supervivencia , Reino Unido
11.
Beilstein J Org Chem ; 6: 1079-88, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21160568

RESUMEN

Understanding the gelation of liquids by low molecular weight solutes at low concentrations gives an insight into many molecular recognition phenomena and also offers a simple route to modifying the physical properties of the liquid. Bis-(α,ß-dihydroxy ester)s are shown here to gel thermoreversibly a wide range of solvents, raising interesting questions as to the mechanism of gelation. At gelator concentrations of 5-50 mg ml⁻¹, gels were successfully formed in acetone, ethanol/water mixtures, toluene, cyclohexane and chloroform (the latter, albeit at a higher gelator concentration). A range of neutron techniques - in particular small-angle neutron scattering (SANS) - have been employed to probe the structure of a selection of these gels. The universality of gelation in a range of solvent types suggests the gelation mechanism is a feature of the bis-(α,ß-dihydroxy ester) motif, with SANS demonstrating the presence of regular structures in the 30-40 Å range. A correlation between the apparent rodlike character of the structures formed and the polarity of the solvent is evident. Preliminary spin-echo neutron scattering studies (SESANS) indicated the absence of any larger scale structures. Inelastic neutron spectroscopy (INS) studies demonstrated that the solvent is largely unaffected by gelation, but does reveal insights into the thermal history of the samples. Further neutron studies of this kind (particularly SESANS and INS) are warranted, and it is hoped that this work will stimulate others to pursue this line of research.

12.
Polymers (Basel) ; 12(4)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32295002

RESUMEN

D- and L-arginine-based polyamidoamino acids, called D- and L-ARGO7, retain the chirality and acid/base properties of the parent -amino acids and show pH-dependent self-structuring in water. The ability of the ARGO7 chiral isomers to selectively interact with chiral biomolecules and/or surfaces was studied by choosing sodium deoxycholate (NaDC) as a model chiral biomolecule for its ability to self-assembly into globular micelles, showing enantio-selectivity. To this purpose, mixtures of NaDC with D-, L- or D,L-ARGO7, respectively, in water were analysed by circular dichroism (CD) spectroscopy and small-angle neutron scattering (SANS) at different levels of acidity expressed in terms of pD and concentrations. Differences in the CD spectra indicated chiral discrimination for NaDC/ARGO7 mixtures in the gel phase (pD 7.30) but not in the solution phase (pD 9.06). SANS measurements confirmed large scale structural perturbation induced by this chiral discrimination in the gel phase yet no modulation of the structure in the solution phase. Together, these techniques shed light on the mechanism by which ARGO7 stereoisomers modify the morphology of NaDC micelles as a function of pH. This work demonstrates chirality-dependent interactions that drive structural evolution and phase behaviour of NaDC, opening the way for designing novel smart drug delivery systems.

13.
J Am Chem Soc ; 131(28): 9746-55, 2009 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-19555102

RESUMEN

The rates of catalytic oxidative decontamination of the chemical warfare agent (CWA) sulfur mustard (HD, bis(2-chlororethyl) sulfide) and a range (chloroethyl) sulfide simulants of variable lipophilicity have been examined using a hydrogen peroxide-based microemulsion system. SANS (small-angle neutron scattering), SAXS (small-angle X-ray scattering), PGSE-NMR (pulsed-gradient spin-echo NMR), fluorescence quenching, and electrospray mass spectroscopy (ESI-MS) were implemented to examine the distribution of HD, its simulants, and their oxidation/hydrolysis products in a model oil-in-water microemulsion. These measurements not only present a means of interpreting decontamination rates but also a rationale for the design of oxidation catalysts for these toxic materials. Here we show that by localizing manganese-Schiff base catalysts at the oil droplet-water interface or within the droplet core, a range of (chloroethyl) sulfides, including HD, spanning some 7 orders of octanol-water partition coefficient (K(ow)), may be oxidized with equal efficacy using dilute (5 wt. % of aqueous phase) hydrogen peroxide as a noncorrosive, environmentally benign oxidant (e.g., t(1/2) (HD) approximately 18 s, (2-chloroethyl phenyl sulfide, C(6)H(5)SCH(2)CH(2)Cl) approximately 15 s, (thiodiglycol, S(CH(2)CH(2)OH)(2)) approximately 19 s {20 degrees C}). Our observations demonstrate that by programming catalyst lipophilicity to colocalize catalyst and substrate, the inherent compartmentalization of the microemulsion can be exploited to achieve enhanced rates of reaction or to exert control over product selectivity. A combination of SANS, ESI-MS and fluorescence quenching measurements indicate that the enhanced catalytic activity is due to the locus of the catalyst and not a result of partial hydrolysis of the substrate.


Asunto(s)
Sustancias para la Guerra Química/química , Descontaminación/métodos , Gas Mostaza/química , Catálisis , Sustancias para la Guerra Química/aislamiento & purificación , Emulsiones , Cinética , Espectroscopía de Resonancia Magnética , Gas Mostaza/aislamiento & purificación , Difracción de Neutrones , Aceites/química , Oxidación-Reducción , Dispersión del Ángulo Pequeño , Solubilidad , Propiedades de Superficie , Agua/química
14.
Langmuir ; 25(15): 8678-84, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19402688

RESUMEN

Formulations involving partially and fully fluorinated media represent a technological challenge given the lipophobic and hydrophobic nature of such liquids. The identification of self-associating materials with which to control the viscosity and solubilizing characteristics of fluorinated solvents is a particularly interesting area of research. It is shown here that the presence of the stereogenic centers inherent in a family of bis-(alpha,beta-dihydroxy ester)s is an essential requirement for the thermoreversible gelation of mixtures of partially fluorinated liquids 2H,3H-perfluoropentane (HPFP) and 1H,1H-heptafluorobutanol (HFB). Gelation is driven by hydrogen bonding, which induces a nonpreferred conformation around the bis-(alpha,beta-dihydroxy ester) structural motif. An analysis of the melting temperature yields an enthalpy of melting that is consistent with three to four hydrogen bonds, commensurate with the end-group structure of the gelator. Small-angle neutron scattering demonstrated the existence of the common fibrillar structures whose dimensions showed no obvious correlation with the molecular structure of the gelator.


Asunto(s)
Butanoles/química , Flúor/química , Geles , Secuencias de Aminoácidos , Enlace de Hidrógeno , Modelos Químicos , Modelos Estadísticos , Neutrones , Dispersión de Radiación , Solventes/química , Estereoisomerismo , Propiedades de Superficie , Temperatura , Termodinámica , Factores de Tiempo
15.
Polymers (Basel) ; 11(1)2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30960093

RESUMEN

Many polymer/surfactant formulations involve a trapped kinetic state that provides some beneficial character to the formulation. However, the vast majority of studies on formulations focus on equilibrium states. Here, nanoscale structures present at dynamic interfaces in the form of air-in-water foams are explored, stabilised by mixtures of commonly used non-ionic, surface active block copolymers (Pluronic®) and small molecule ionic surfactants (sodium dodecylsulfate, SDS, and dodecyltrimethylammonium bromide, C12TAB). Transient foams formed from binary mixtures of these surfactants shows considerable changes in stability which correlate with the strength of the solution interaction which delineate the interfacial structures. Weak solution interactions reflective of distinct coexisting micellar structures in solution lead to segregated layers at the foam interface, whereas strong solution interactions lead to mixed structures both in bulk solution, forming interdigitated layers at the interface.

16.
J Colloid Interface Sci ; 552: 9-16, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31100690

RESUMEN

HYPOTHESIS: Adsorption of hydrophobically modified ethoxylated urethane polymers (HEURs) at the soft colloid interfaces of emulsion droplets will stabilise oil-in-water emulsions (a) via steric stabilisation induced by adsorption of the polymer at the droplet surfaces through the hydrophobic groups, and (b) via continuous phase viscosity enhancement through polymer self-association. Both of these mechanisms will be modulated by the presence of the surfactant, sodium dodecylsulfate (SDS). EXPERIMENTS: Dodecane-in-water emulsions stabilised by three HEUR polymers with different structural composition were examined in the absence and presence of SDS by NMR spectroscopy and small-angle neutron scattering (SANS). The effect of adsorption of the polymer to the dodecane droplet surfaces, and the conformation of the self-associating polymer in the aqueous solution were quantified. FINDINGS: All emulsions were stable for days-weeks. Diffusion data showed the formation of oil droplets of hundreds of nm in size in the presence of all three HEURs, here denoted C6-L-(EO100-L)9-C6, C10-L-(EO200-L)4-C10, and C18-L-(EO200-L)7-C18, where EOx represents a block of ethylene oxide of x monomers, L denotes the linker group, and Cn the length of the hydrophobic end-group. No significant changes in droplet size across this series of polymers was observed. Collectively, the results point to adsorption of the polymer to the droplet surfaces, which results in a small decrease in the effective polymer solution concentration, thereby driving to significant changes in the structure and dynamics of the system. Evident in the SANS data in particular, is a subtle balance between the characteristic features reflecting polymer self-association, and those associated with polymer structures commensurate with a larger length-scale, dependent on the system composition. Surprisingly, the polymer and polymer/SDS complex in the presence of oil show slightly greater diffusive rates relative to the analogous systems in the absence of the oil. Finally, the partitioning of the three polymers in phase-separated samples was studied by 1H NMR, and it was shown that the C18-L-(EO200-L)7-C18 exhibited a greater partitioning in the oil phase compared with C6-L-(EO100-L)9-C6 and C10-L-(EO200-L)4-C10, an observation that may be understood in terms of the structural composition of the HEURs. The SDS showed a positive correlation between its partitioning in the two layers with the polymer partitioning, evidence of a strong interaction between the surfactant and the polymer, consistent with the behaviour observed in the oil-free system.

17.
J Colloid Interface Sci ; 539: 126-134, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30579216

RESUMEN

HYPOTHESIS: The presence of surfactant modulates the surface-chemistry-specific interaction of hard colloidal particles (latex) with HEUR polymers, principally through introducing a preferential solution interaction rather than a competitive surface interaction; addition of surfactant leads to a preponderance of polymer/surfactant solution complexes rather than surface-bound complexes. EXPERIMENTS: A range of model formulations comprising a hexyl end-capped urethane polymer (C6-L-(EO100-L)9-C6), sodium dodecylsulfate (SDS) and a series of polystyrene-butylacrylate latices (PS-BA-L) have been characterised in terms of rheology, particle surface area (solvent relaxation NMR), polymer conformation (small-angle neutron scattering) and solution composition to build up a detailed picture of the distribution of the HEUR in the presence of both surfactant and latex. FINDINGS: There is very weak adsorption of C6-L-(EO100-L)9-C6 to only the most hydrophobic latex surface studied, an adsorption that is further weakened by the addition of low levels of surfactant. Macroscopic changes in the hydrophobic latex system may be interpreted in terms of bridging flocculation at low polymer concentrations. No adsorption of C6-L-(EO100-L)9-C6 is observed in the case of hydrophilic surfaces. In most cases, the observed behaviour of the ternary system (polymer/surfactant/particle) is highly reminiscent of the binary (polymer/surfactant) system at the appropriate composition, suggesting that the polymer/surfactant solution interaction is the dominant one.

18.
Eur J Pharm Sci ; 128: 81-90, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30472222

RESUMEN

Thiamine-coated nanoparticles were prepared by two different preparative methods and evaluated to compare their mucus-penetrating properties and fate in vivo. The first method of preparation consisted of surface modification of freshly poly(anhydride) nanoparticles (NP) by simple incubation with thiamine (T-NPA). The second procedure focused on the preparation and characterization of a new polymeric conjugate between the poly(anhydride) backbone and thiamine prior the nanoparticle formation (T-NPB). The resulting nanoparticles displayed comparable sizes (about 200 nm) and slightly negative surface charges. For T-NPA, the amount of thiamine associated to the surface of the nanoparticles was 15 µg/mg. For in vivo studies, nanoparticles were labelled with either 99mTc or Lumogen® Red. T-NPA and T-NPB moved faster from the stomach to the small intestine than naked nanoparticles. Two hours post-administration, for T-NPA and T-NPB, >30% of the given dose was found in close contact with the intestinal mucosa, compared with a 13.5% for NP. Interestingly, both types of thiamine-coated nanoparticles showed a greater ability to cross the mucus layer and interact with the surface of the intestinal epithelium than NP, which remained adhered in the mucus layer. Four hours post-administration, around 35% of T-NPA and T-NPB were localized in the ileum of animals. Overall, both preparative processes yielded thiamine decorated carriers with similar physico-chemical and biodistribution properties, increasing the versatility of these nanocarriers as oral delivery systems for a number of biologically active compounds.


Asunto(s)
Nanopartículas/administración & dosificación , Tiamina/administración & dosificación , Tiamina/farmacocinética , Administración Oral , Animales , Tránsito Gastrointestinal , Intestino Delgado/metabolismo , Masculino , Maleatos/química , Polivinilos/química , Ratas , Ratas Wistar , Porcinos , Distribución Tisular
19.
Biomacromolecules ; 9(4): 1170-8, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18348532

RESUMEN

Synthetic polycations have shown promise as gene delivery vehicles but suffer from an unacceptable toxicity and low transfection efficiency. Novel architectures are being explored to increase transfection efficiency, including copolymers with a thermoresponsive character. The physicochemical characterization of a family of copolymers comprising a core of the cationic polymer poly(ethylene imine) (PEI) with differing thermoresponsive poly( N-isopropylacrylamide) (PNIPAM) grafts has been carried out using pulsed-gradient spin-echo NMR (PGSE-NMR) and small-angle neutron scattering (SANS). For the copolymers that have longer chain PNIPAM grafts, there is clear evidence of the collapse of the grafts with increasing temperature and the associated emergence of an attractive interpolymer interaction. These facets depend on the number of PNIPAM grafts attached to the PEI core. While a collapse in the smaller PNIPAM grafts is observed for the third polymer, there is no appearance of the interpolymer attractive interaction. These observations provide further insight into the association behavior of these copolymers, which is fundamental to developing a full understanding of how they interact with nucleic acids. Furthermore, the differing behaviors of the three copolymers over temperatures in which the PNIPAM blocks undergo coil-to-globule transitions is indicative of changes in the presentation of charged-core and hydrophobic chain components, which are key factors affecting nucleic acid binding and, ultimately, cell transfection ability.


Asunto(s)
Resinas Acrílicas/química , Polietileneimina/química , Polímeros/química , Espectroscopía de Resonancia Magnética , Polímeros/síntesis química , Polímeros/metabolismo , Espectrofotometría Ultravioleta , Temperatura , Agua/química
20.
J Pharm Pharmacol ; 60(5): 593-9, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18416935

RESUMEN

Fluorinated liquids possess high chemical and physical stability, are tolerated by the human body and, therefore, show great promise in biomedical fields; however, they require extensive formulation. Phase diagrams are reported here for a series of ethylene oxide oligomeric additives in 2H,3H-perfluoropentane (HPFP), a non-chlorofluorocarbon fluorinated liquid regarded as a model propellant for pressurized metered-dose inhalers. Over a wide range of temperatures and concentrations, dihydroxyl end-capped poly(ethylene glycols) (PEGs) exhibited a lower critical solution temperature (LCST) that was strongly molecular weight dependent. In contrast, monomethyl (and thus monohydroxy) and dimethyl end-capped poly(ethylene oxides) were fully miscible with HPFP over the same temperature and concentration ranges, suggesting that the phase behaviour was dominated by end-group/solvent interactions. By systematically substituting HPFP for the fully fluorinated analogue perfluoropentane, the ability of these end-groups to interact with the solvent was perturbed and LCST-type behaviour was induced in the previously fully miscible monomethyl and dimethyl end-capped PEGs. Concomitantly, with increasing perfluoropentane content, the LCST of the dihydroxyl end-capped PEGs was driven to lower temperatures. Therefore, the phase behaviour of these systems may be controlled by 'tuning' the end-group structure of the ethylene oxide oligomers, and varying the hydrogen bonding capabilities of the fluorinated solvents.


Asunto(s)
Propelentes de Aerosoles/química , Fluorocarburos/química , Polietilenglicoles/química , Peso Molecular , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA