Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 323(2): H336-H349, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35749718

RESUMEN

Aging is a nonmodifiable risk factor for cardiovascular disease associated with arterial stiffening and endothelial dysfunction. We hypothesized that sex differences exist in vascular aging processes and would be attenuated by global deletion of the G protein-coupled estrogen receptor. Blood pressure was measured by tail-cuff plethysmography, pulse wave velocity (PWV) and echocardiography were assessed with high-resolution ultrasound, and small vessel reactivity was measured using wire myography in adult (25 wk) and middle-aged (57 wk) male and female mice. Adult female mice displayed lower blood pressure and PWV, but this sex difference was absent in middle-aged mice. Aging significantly increased PWV but not blood pressure in both sexes. Adult female carotids were more distensible than males, but this sex difference was lost during aging. Acetylcholine-induced relaxation was greater in female than male mice at both ages, and only males showed aging-induced changes in cardiac hypertrophy and function. GPER deletion removed the sex difference in PWV and ex vivo stiffness in adult mice. The sex difference in blood pressure was absent in KO mice and was associated with endothelial dysfunction in females. These findings indicate that the impact of aging on arterial stiffening and endothelial function is not the same in male and female mice. Moreover, nongenomic estrogen signaling through GPER impacted vascular phenotype differently in male and female mice. Delineating sex differences in vascular changes during healthy aging is an important first step in improving early detection and sex-specific treatments in our aging population.NEW & NOTEWORTHY Indices of vascular aging were different in male and female mice. Sex differences in pulse wave velocity, blood pressure, and large artery stiffness were abrogated in middle-aged mice, but the female advantage in resistance artery vasodilator function was maintained. GPER deletion abrogated these sex differences and significantly reduced endothelial function in adult female mice. Additional studies are needed to characterize sex differences in vascular aging to personalize early detection and treatment for vascular diseases.


Asunto(s)
Análisis de la Onda del Pulso , Rigidez Vascular , Animales , Presión Sanguínea/fisiología , Arterias Carótidas/diagnóstico por imagen , Femenino , Masculino , Ratones , Receptores Acoplados a Proteínas G/genética , Caracteres Sexuales , Rigidez Vascular/fisiología
2.
BMC Musculoskelet Disord ; 22(1): 388, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902505

RESUMEN

BACKGROUND: Knee osteoarthritis (KOA) is increasingly more prevalent and significant number of patients require knee arthroplasty. Although knee arthroplasty is generally successful, it takes months to recover physical function. Preoperative physical function is known to predict postoperative outcomes and exercise can improve preoperative physical function. However, patients with KOA have difficulty exercise on land due to pain and stiffness, while water exercise can be better tolerated. We hypothesized that preoperative water exercise to improve preoperative physical function will improve postoperative outcomes after total knee arthroplasty (TKA). METHODS: We enrolled 43 participants who were scheduled for elective TKA in 4-8 weeks and scored at or below 50th percentile in mobility assessment tool-sf (MAT-sf). All enrolled participants were assessed on 1) clinical osteoarthritis symptom severity using Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), 2) physical function using Short Physical Performance Battery (SPPB), 3) self-reported mobility using Mobility Assessment Tool-short form (MAT-sf), 4) depression using Geriatric Depression Scale-short form (GDS-sf), 5) cognitive function using Montreal Cognitive Assessment (MoCA). Blood samples for high-sensitivity-C-reactive protein (hs-CRP), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were stored at - 80 °C then all samples were analyzed together. All the enrolled participants were randomly assigned to the aquatic exercise intervention (AEI) or usual care group. Sixty minute sessions of AEI was conducted three times a week for 4-8 weeks. Participants in both groups were evaluated within 1 week before their scheduled surgery, as well as 4 weeks after the surgery. RESULTS: The mean age was 67.1 (±6.2), 44% were female, 74% were White. There is no statistically significant difference in combined outcome of any complication, unscheduled ER visit, and disposition to nursing home or rehab facility by AEI. However, AEI was associated with more favorable outcomes: WOMAC scores (p < 0.01), chair-stand (p = 0.019), MAT-sf as well as improved depression (p = 0.043) and cognition (p = 0.008). CONCLUSION: 4-8 weeks of aquatic exercise intervention resulted in improved functional outcomes as well as improved depression and cognition in elderly patients undergoing TKA. A larger study is warranted to explore the role of water exercise in clinical and functional outcomes of TKA.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Osteoartritis de la Rodilla , Adulto , Anciano , Artroplastia de Reemplazo de Rodilla/efectos adversos , Terapia por Ejercicio , Femenino , Humanos , Masculino , Osteoartritis de la Rodilla/diagnóstico , Osteoartritis de la Rodilla/cirugía , Proyectos Piloto , Ejercicio Preoperatorio , Resultado del Tratamiento
3.
Curr Opin Anaesthesiol ; 34(2): 187-198, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33606395

RESUMEN

PURPOSE OF REVIEW: Hospitalizations for COVID-19 dramatically increase with age. This is likely because of increases in fragility across biological repair systems and a weakened immune system, including loss of the cardiorenal protective arm of the renin--angiotensin system (RAS), composed of angiotensin-converting enzyme-2 (ACE2)/angiotensin-(1--7) [Ang-(1--7)] and its actions through the Mas receptor. The purpose of this review is to explore how cardiac ACE2 changes with age, cardiac diseases, comorbid conditions and pharmaceutical regimens in order to shed light on a potential hormonal unbalance facilitating SARs-CoV-2 vulnerabilities in older adults. RECENT FINDINGS: Increased ACE2 gene expression has been reported in human hearts with myocardial infarction, cardiac remodeling and heart failure. We also found ACE2 mRNA in atrial appendage tissue from cardiac surgical patients to be positively associated with age, elevated by certain comorbid conditions (e.g. COPD and previous stroke) and increased in conjunction with patients' chronic use of antithrombotic agents and thiazide diuretics but not drugs that block the renin--angiotensin system. SUMMARY: Cardiac ACE2 may have bifunctional roles in COVID-19 as ACE2 not only mediates cellular susceptibility to SARS-CoV-2 infection but also protects the heart via the ACE2/Ang-(1--7) pathway. Linking tissue ACE2 from cardiac surgery patients to their comorbid conditions and medical regimens provides a unique latform to address the influence that altered expression of the ACE2/Ang-(1-7)/Mas receptor axis might have on SARs-CoV-2 vulnerability in older adults.


Asunto(s)
Apéndice Atrial , COVID-19 , Procedimientos Quirúrgicos Cardíacos , Anciano , Envejecimiento , Enzima Convertidora de Angiotensina 2 , Angiotensinas , Apéndice Atrial/cirugía , Humanos , SARS-CoV-2
4.
Clin Sci (Lond) ; 134(19): 2645-2664, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33063823

RESUMEN

The virulence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the aggressive nature of the disease has transformed the universal pace of research in the desperate attempt to seek effective therapies to halt the morbidity and mortality of this pandemic. The rapid sequencing of the SARS-CoV-2 virus facilitated identification of the receptor for angiotensin converting enzyme 2 (ACE2) as the high affinity binding site that allows virus endocytosis. Parallel evidence that coronavirus disease 2019 (COVID-19) disease evolution shows greater lethality in patients with antecedent cardiovascular disease, diabetes, or even obesity questioned the potential unfavorable contribution of angiotensin converting enzyme (ACE) inhibitors or angiotensin II (Ang II) receptor blockers as facilitators of adverse outcomes due to the ability of these therapies to augment the transcription of Ace2 with consequent increase in protein formation and enzymatic activity. We review, here, the specific studies that support a role of these agents in altering the expression and activity of ACE2 and underscore that the robustness of the experimental data is associated with weak clinical long-term studies of the existence of a similar regulation of tissue or plasma ACE2 in human subjects.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/virología , Peptidil-Dipeptidasa A/efectos de los fármacos , Neumonía Viral/virología , Enzima Convertidora de Angiotensina 2 , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/enzimología , Humanos , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/enzimología , SARS-CoV-2 , Factores de Tiempo
5.
J Surg Res ; 253: 173-184, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32361612

RESUMEN

BACKGROUND: Heart chymase rather than angiotensin (Ang)-converting enzyme has higher specificity for Ang I conversion into Ang II in humans. A new pathway for direct cardiac Ang II generation has been revealed through the demonstration that Ang-(1-12) is cleaved by chymase to generate Ang II directly. Herein, we address whether Ang-(1-12), chymase messenger RNA (mRNA), and activity levels can be differentiated in human atrial tissue from normal and diseased hearts and if these measures associate with various pathologic heart conditions. MATERIALS AND METHODS: Atrial appendages were collected from 11 nonfailing donor hearts and 111 patients undergoing heart surgery for the correction of valvular heart disease, resistant atrial fibrillation, or ischemic heart disease. Chymase mRNA was analyzed by real-time polymerase chain reaction and enzymatic activity by high-performance liquid chromatography using Ang-(1-12) as the substrate. Ang-(1-12) levels were determined by immunohistochemical staining. RESULTS: Chymase gene transcripts, chymase activity, and immunoreactive Ang-(1-12) expression levels were higher in left atrial tissue compared with right atrial tissue, irrespective of cardiac disease. In addition, left atrial chymase mRNA expression was significantly higher in stroke versus nonstroke patients and in cardiac surgery patients who had a history of postoperative atrial fibrillation versus nonatrial fibrillation. Correlation analysis showed that left atrial chymase mRNA was positively related to left atrial enlargement, as determined by echocardiography. CONCLUSIONS: As Ang-(1-12) expression and chymase gene transcripts and enzymatic activity levels were positively linked to left atrial size in patients with left ventricular heart disease, an important alternate Ang II forming pathway, via Ang-(1-12) and chymase, in maladaptive atrial and ventricular remodeling in humans is uncovered.


Asunto(s)
Angiotensinógeno/metabolismo , Fibrilación Atrial/epidemiología , Quimasas/metabolismo , Atrios Cardíacos/patología , Fragmentos de Péptidos/metabolismo , Accidente Cerebrovascular/epidemiología , Anciano , Angiotensinógeno/análisis , Animales , Fibrilación Atrial/patología , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/cirugía , Quimasas/análisis , Quimasas/genética , Ecocardiografía , Femenino , Perfilación de la Expresión Génica , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/cirugía , Enfermedades de las Válvulas Cardíacas/patología , Enfermedades de las Válvulas Cardíacas/cirugía , Ventrículos Cardíacos/fisiopatología , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Isquemia Miocárdica/patología , Isquemia Miocárdica/cirugía , Fragmentos de Péptidos/análisis , ARN Mensajero/aislamiento & purificación , ARN Mensajero/metabolismo , Remodelación Ventricular
6.
Curr Hypertens Rep ; 22(9): 62, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32852624

RESUMEN

PURPOSE OF REVIEW: Angiotensin-converting enzyme 2 (ACE2), a specific high-affinity angiotensin II-hydrolytic enzyme, is the vector that facilitates cellular entry of SARS-CoV-1 and the novel SARS-CoV-2 coronavirus. SARS-CoV-2, which crossed species barriers to infect humans, is highly contagious and associated with high lethality due to multi-organ failure, mostly in older patients with other co-morbidities. RECENT FINDINGS: Accumulating clinical evidence demonstrates that the intensity of the infection and its complications are more prominent in men. It has been postulated that potential functional modulation of ACE2 by estrogen may explain the sex difference in morbidity and mortality. We review here the evidence regarding the role of estrogenic hormones in ACE2 expression and regulation, with the intent of bringing to the forefront potential mechanisms that may explain sex differences in SARS-CoV-2 infection and COVID-19 outcomes, assist in management of COVID-19, and uncover new therapeutic strategies.


Asunto(s)
Infecciones por Coronavirus/etiología , Estrógenos/fisiología , Peptidil-Dipeptidasa A/fisiología , Neumonía Viral/etiología , Factores Sexuales , Enzima Convertidora de Angiotensina 2 , Betacoronavirus , COVID-19 , Femenino , Humanos , Masculino , Pandemias , SARS-CoV-2
7.
Biochem Biophys Res Commun ; 514(3): 998-1003, 2019 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-31092335

RESUMEN

The molecular mechanisms of postmenopausal heart diseases in women may involve the loss of estrogen-deactivation of its membrane receptor, G-protein coupled estrogen receptor (GPER), and subsequent activation of the cardiac NLRP3 inflammasome, a component of the innate immune system. To study the potential effects of cardiac GPER on NLRP3-mediated inflammatory pathways, we characterized changes in innate immunity gene transcripts in hearts from 6-month-old cardiomyocyte-specific GPER knockout (KO) mice and their GPER-intact wild type (WT) littermates using RT2 Profiler™ real-time PCR array. GPER deletion in cardiomyocytes decreased %fractional shortening (%FS) and myocardial relaxation (e'), and increased the early mitral inflow filling velocity-to-early mitral annular descent velocity ratio (E/e'), determined by echocardiography, and increased the mRNA levels of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP), determined by real-time PCR. Of the 84 inflammasome-related genes tested, 9 genes were upregulated, including NLRP3 and IL-18, while 1 gene, IL-12a, was downregulated in GPER KO when compared to WT. The importance of NLRP3 upregulation in GPER KO-induced heart failure was further confirmed by an in vivo study showing that, compared to vehicle-treated KO mice, 8 weeks of treatment with a NLRP3 inhibitor, MCC950 (10 mg/kg, i.p., 3 times per week), significantly limited hypertrophic remodeling, defined by reductions in heart weight/body weight, and improved systolic and diastolic functional indices, including increases in %FS and e', and decreases E/e' (P < 0.05). Both ANF and BNP mRNA levels were also significantly reduced by chronic MCC950 treatment. The findings from this study point toward a new understanding for the increased occurrence of heart diseases in women following loss or absence of estrogenic protection and GPER activation that involves cardiac NLRP3 inflammatory pathways.


Asunto(s)
Furanos/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Sulfonamidas/uso terapéutico , Disfunción Ventricular Izquierda/tratamiento farmacológico , Animales , Femenino , Eliminación de Gen , Corazón/efectos de los fármacos , Corazón/fisiopatología , Compuestos Heterocíclicos de 4 o más Anillos , Indenos , Masculino , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Sulfonas , Regulación hacia Arriba , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/fisiopatología
8.
Biochem Biophys Res Commun ; 518(4): 651-656, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31466718

RESUMEN

Angiotensin processing peptidases (carboxypeptidase A (CPA) and chymase) are stored in cardiac mast cell (MC) secretory granules in large quantity and are co-released into the extracellular environment after activation/degranulation. In the human heart, chymase is primarily responsible for angiotensin II (Ang II) generation from the alternate substrate angiotensin-(1-12) (Ang-(1-12)). We investigated the individual and combined hydrolytic specificity of CPA and chymase enzymes (1:1 and 1:⅓ ratio) in the processing of the human Ang-(1-12) (hAng-(1-12)) substrate. To determine the Km and Vmax, the CPA and recombinant human chymase (rhChymase) enzymes were incubated with increasing concentrations of hAng-(1-12) substrate (0-300 µM). We found that CPA alone sequentially metabolized hAng-(1-12) substrate into angiotensin-(1-9) (Ang-(1-9), 53%), Ang II (22%) and angiotensin-(1-7) (Ang-(1-7), 11%) during a 15 min incubation. In the presence of rhChymase alone, 125I-hAng-(1-12) was directly metabolized into Ang II (89%) and no further hydrolysis of Ang II was detected. In the presence of both CPA + rhChymase enzymes (1:1 or 1:⅓ ratio), the amount of Ang II formation from 125I-hAng-(1-12) within a 5 min incubation period were 68% or 65%, respectively. In the presence of both (CPA + rhChymase), small amounts of Ang-(1-9) and Ang-(1-7) were generated from 125I-hAng-(1-12). The Km and Vmax values were 150 ±â€¯5 µM and 384 ±â€¯23 nM/min/mg of CPA and 40 ±â€¯9 µM and 116 ±â€¯20 nM/min/mg of rhChymase. The catalytic efficiency (Vmax/Km ratio) was higher for rhChymase/hAng-(1-12) compared to CPA/hAng-(1-12). Compared to CPA, chymase has a much higher affinity to hydrolyze the hAng-(1-12) substrate directly into Ang II. In addition, Ang II and Ang-(1-7) are the end products of chymase and CPA, respectively. Overall, our findings suggest that the Ang II generation from hAng-(1-12) is primarily mediated by chymase rather than CPA.


Asunto(s)
Angiotensinógeno/metabolismo , Angiotensinas/metabolismo , Carboxipeptidasas A/metabolismo , Quimasas/metabolismo , Proteínas Recombinantes/metabolismo , Secuencia de Aminoácidos , Angiotensina I/metabolismo , Animales , Carboxipeptidasas A/genética , Quimasas/genética , Humanos , Hidrólisis , Mastocitos/metabolismo , Miocardio/metabolismo , Fragmentos de Péptidos/metabolismo , Especificidad por Sustrato , alfa 1-Antitripsina
9.
Mol Cell Biochem ; 456(1-2): 85-93, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30712071

RESUMEN

Chymases, a family of serine proteases with chymotryptic activity, play a significant role in cardiac angiotensin II (Ang II) formation from its substrate Ang-(1-12) in both human and rodent models. No studies, to date, have assessed the differences in enzymatic activity among these isoforms in Ang II formation, particularly in the cardiomyocyte (CM). Using PCR and DNA sequencing, we demonstrated that MCP-1, MCP-2, MCP-4, and MCP-5 mRNAs are expressed in the CM of both spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). While rMCP-1 and rMCP-5 gene transcripts were higher than that of other isoforms in both rat strains, WKY CM exhibits higher levels of rMCP-1 and rMCP-5 mRNAs compared to the SHR CM. Ovariectomy (OVX) increased the expression of rMCP-1 and rMCP-5 mRNAs in WKY. In SHR, OVX was associated with a blunted increase in rMCP-1 mRNA compared to OVX normotensive WKY. Chymase activity, measured as Ang II formation from Ang-(1-12), significantly correlated with rMCP-1 and rMCP-5 mRNA expression in both rat strains. Both rMCP-1 and rMCP-5 mRNA expressions were positively correlated with progressive diastolic dysfunction (increasing the ratio of early mitral inflow velocity-to-early mitral annular velocity, E/e') and expanding chamber dimensions or increasing left ventricular internal diameter end diastole. These data show rMCP-1 and rMCP-5 as the Ang II forming chymase isoforms participating in the loss of normal cardiac function due to OVX in rodents.


Asunto(s)
Quimasas/biosíntesis , Diástole/efectos de los fármacos , Estrógenos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Proteínas Musculares/biosíntesis , Miocitos Cardíacos/enzimología , Animales , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Femenino , Miocitos Cardíacos/citología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
10.
J Cardiovasc Pharmacol ; 74(5): 443-452, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31361702

RESUMEN

This study was aimed to clarify differences in how specific agonists of the 3 estrogen receptors (ERs) influence diastolic function and the renin-angiotensin system (RAS) after ovariectomy (OVX) in 24 female spontaneously hypertensive rat (SHR) undergoing bilateral OVX at 12 weeks of age. Eight weeks after surgery, rats were randomized (n = 6/group) to receive equipotent, daily treatments of one of the ER agonists (ERα agonist, propyl pyrazole trisphenol 94 µg/kg; ERß agonist, diarylpropionitrile 58 µg/kg; G-protein-coupled estrogen receptor [GPER] agonist, G1 100 µg/kg), or vehicle (peanut oil). After 4 weeks of treatment, left ventricular function/structure and systemic/intracardiac pressure measurements were obtained by echocardiography and a fluid-filled catheter attached to a pressure transducer, respectively. Selective ER agonist treatment with G1 or propyl pyrazole trisphenol led to improvements in diastolic function after estrogen loss when compared with vehicle-treated OVX rats. Although mean arterial blood pressure was not overtly different among groups, chronic G1, but not the other ER ligands, enhanced the in vitro vasorelaxant responsiveness to acetylcholine in aortic rings. These favorable effects of G1 were further linked to reductions in cardiac angiotensin-converting enzyme activity, AT1R protein expression, and Ang II immunoreactivity. Activation of ERß had no effect on cardiac function and did not alter components of the canonical cardiac RAS in comparison with vehicle-treated OVX SHR. These data imply that of the 3 ERs, GPER has a unique role in preserving diastolic function and favorably modulating the cardiac RAS independent of arterial pressure. Specifically, if GPER is pharmacologically activated, it could provide a therapeutic opportunity to limit the development and/or progression of diastolic dysfunction in hypertensive women after estrogen loss.


Asunto(s)
Ciclopentanos/farmacología , Estrógenos/farmacología , Hipertensión/tratamiento farmacológico , Miocardio/metabolismo , Quinolinas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Sistema Renina-Angiotensina/efectos de los fármacos , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda/efectos de los fármacos , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Diástole , Modelos Animales de Enfermedad , Femenino , Hipertensión/complicaciones , Hipertensión/metabolismo , Hipertensión/fisiopatología , Ovariectomía , Peptidil-Dipeptidasa A/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Ratas Endogámicas SHR , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología
12.
J Cell Physiol ; 233(4): 3330-3342, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28888034

RESUMEN

The relatively low efficacy of ACE-inhibitors in the treatment of heart failure in women after estrogen loss may be due to their inability to reach the intracellular sites at which angiotensin (Ang) II is generated and/or the existence of cell-specific mechanisms in which ACE is not the essential processing pathway for Ang II formation. We compared the metabolic pathway for Ang II formation in freshly isolated myocytes (CMs) and non-myocytes (NCMs) in cardiac membranes extracted from hearts of gonadal-intact and ovariectomized (OVX) adult WKY and SHR rats. Plasma Ang II levels were higher in WKY vs. SHR (strain effect: WKY: 62 ± 6 pg/ml vs. SHR: 42 ± 9 pg/ml; p < 0.01), independent of OVX. The enzymatic activities of chymase, ACE, and ACE2 were higher in NCMs versus CMs, irrespective of whether assays were performed in cardiac membranes from WKY or SHR or in the presence or absence of OVX. E2 depletion increased chymase activity, but not ACE activity, in both CMs and NCMs. Moreover, cardiac myocyte chymase activity associated with diastolic function in WKYs and cardiac structure in SHRs while no relevant functional and structural relationships between the classic enzymatic pathway of Ang II formation by ACE or the counter-regulatory Ang-(1-7) forming path from Ang II via ACE2 were apparent. The significance of these novel findings is that targeted cell-specific chymase rather than ACE inhibition may have a greater benefit in the management of HF in women after menopause.


Asunto(s)
Angiotensina II/metabolismo , Quimasas/metabolismo , Estrógenos/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Femenino , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Ratas , Ratas Endogámicas SHR , Receptor de Angiotensina Tipo 1/metabolismo
13.
Biochim Biophys Acta Mol Basis Dis ; 1863(8): 1870-1882, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27725247

RESUMEN

Activation of G protein-coupled estrogen receptor (GPER) by its agonist, G1, protects the heart from stressors such as pressure-overload, ischemia, a high-salt diet, estrogen loss, and aging, in various male and female animal models. Due to nonspecific effects of G1, the exact functions of cardiac GPER cannot be concluded from studies using systemic G1 administration. Moreover, global knockdown of GPER affects glucose homeostasis, blood pressure, and many other cardiovascular-related systems, thereby confounding interpretation of its direct cardiac actions. We generated a cardiomyocyte-specific GPER knockout (KO) mouse model to specifically investigate the functions of GPER in cardiomyocytes. Compared to wild type mice, cardiomyocyte-specific GPER KO mice exhibited adverse alterations in cardiac structure and impaired systolic and diastolic function, as measured by echocardiography. Gene deletion effects on left ventricular dimensions were more profound in male KO mice compared to female KO mice. Analysis of DNA microarray data from isolated cardiomyocytes of wild type and KO mice revealed sex-based differences in gene expression profiles affecting multiple transcriptional networks. Gene Set Enrichment Analysis (GSEA) revealed that mitochondrial genes are enriched in GPER KO females, whereas inflammatory response genes are enriched in GPER KO males, compared to their wild type counterparts of the same sex. The cardiomyocyte-specific GPER KO mouse model provides us with a powerful tool to study the functions of GPER in cardiomyocytes. The gene expression profiles of the GPER KO mice provide foundational information for further study of the mechanisms underlying sex-specific cardioprotection by GPER.


Asunto(s)
Eliminación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Miocitos Cardíacos/metabolismo , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Disfunción Ventricular Izquierda , Remodelación Ventricular/genética , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Miocitos Cardíacos/patología , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Caracteres Sexuales , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología
14.
Curr Hypertens Rep ; 19(2): 16, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28233239

RESUMEN

PURPOSE OF THE REVIEW: Drugs targeting the renin-angiotensin system (RAS), namely angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers, are the most commonly prescribed drugs for patients with or at risk for cardiovascular events. However, new treatment strategies aimed at mitigating the rise of the heart failure pandemic are warranted because clinical trials show that RAS blockers have limited benefits in halting disease progression. The main goal of this review is to put forward the concept of an intracrine RAS signaling through the novel angiotensin-(1-12)/chymase axis as the main source of deleterious angiotensin II (Ang II) in cardiac maladaptive remodeling leading to heart failure (HF). RECENT FINDINGS: Expanding traditional knowledge, Ang II can be produced in tissues independently from the circulatory renin-angiotensin system. In the heart, angiotensin-(1-12) [Ang-(1-12)], a recently discovered derivative of angiotensinogen, is a precursor of Ang II, and chymase rather than ACE is the main enzyme contributing to the direct production of Ang II from Ang-(1-12). The Ang-(1-12)/chymase axis is an independent intracrine pathway accounting for the trophic, contractile, and pro-arrhythmic Ang II actions in the human heart. Ang-(1-12) expression and chymase activity have been found elevated in the left atrial appendage of heart disease subjects, suggesting a pivotal role of this axis in the progression of HF. Recent meta-analysis of large clinical trials on the use of ACE inhibitors and angiotensin receptor blockers in cardiovascular disease has demonstrated an imbalance between patients that significantly benefit from these therapeutic agents and those that remain at risk for heart disease progression. Looking to find an explanation, detailed investigation on the RAS has unveiled a previously unrecognized complexity of substrates and enzymes in tissues ultimately associated with the production of Ang II that may explain the shortcomings of ACE inhibition and angiotensin receptor blockade. Discovery of the Ang-(1-12)/chymase axis in human hearts, capable of producing Ang II independently from the circulatory RAS, has led to the notion that a tissue-delimited RAS signaling in an intracrine fashion may account for the deleterious effects of Ang II in the heart, contributing to the transition from maladaptive cardiac remodeling to heart failure. Targeting intracellular RAS signaling may improve current therapies aimed at reducing the burden of heart failure.


Asunto(s)
Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Angiotensinógeno/metabolismo , Quimasas/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Hipertensión/tratamiento farmacológico , Fragmentos de Péptidos/metabolismo , Sistema Renina-Angiotensina/fisiología , Animales , Humanos , Receptores de Angiotensina/fisiología , Sistema Renina-Angiotensina/efectos de los fármacos
15.
Am J Physiol Heart Circ Physiol ; 310(8): H995-1002, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26873967

RESUMEN

Angiotensin-(1-12) [ANG-(1-12)] is processed into ANG II by chymase in rodent and human heart tissue. Differences in the amino acid sequence of rat and human ANG-(1-12) render the human angiotensinogen (hAGT) protein refractory to cleavage by renin. We used transgenic rats harboring the hAGT gene [TGR(hAGT)L1623] to assess the non-renin-dependent effects of increased hAGT expression on heart function and arterial pressure. Compared with Sprague-Dawley (SD) control rats (n= 11), male homozygous TGR(hAGT)L1623 (n= 9) demonstrated sustained daytime and nighttime hypertension associated with no changes in heart rate but increased heart rate lability. Increased heart weight/tibial length ratio and echocardiographic indexes of cardiac hypertrophy were associated with modest reduction of systolic function in hAGT rats. Robust human ANG-(1-12) immunofluorescence within myocytes of TGR(hAGT)L1623 rats was associated with a fourfold increase in cardiac ANG II content. Chymase enzymatic activity, using the rat or human ANG-(1-12) as a substrate, was not different in the cardiac tissue of SD and hAGT rats. Since both cardiac angiotensin-converting enzyme (ACE) and ACE2 activities were not different among the two strains, the changes in cardiac structure and function, blood pressure, and left ventricular ANG II content might be a product of an increased cardiac expression of ANG II generated through a non-renin-dependent mechanism. The data also underscore the existence in the rat of alternate enzymes capable of acting on hAGT protein. Homozygous transgenic rats expressing the hAGT gene represent a novel tool to investigate the contribution of human relevant renin-independent cardiac ANG II formation and function.


Asunto(s)
Angiotensinógeno/metabolismo , Hipertensión/metabolismo , Miocardio/metabolismo , Fragmentos de Péptidos/metabolismo , Sistema Renina-Angiotensina , Angiotensinógeno/sangre , Angiotensinógeno/genética , Animales , Presión Arterial , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Modelos Animales de Enfermedad , Genotipo , Frecuencia Cardíaca , Homocigoto , Humanos , Hidrólisis , Hipertensión/diagnóstico por imagen , Hipertensión/genética , Hipertensión/fisiopatología , Masculino , Miocardio/patología , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/genética , Fenotipo , Ratas Sprague-Dawley , Ratas Transgénicas , Sistema Renina-Angiotensina/genética , Factores de Tiempo , Ultrasonografía , Función Ventricular Izquierda
16.
Am J Physiol Heart Circ Physiol ; 311(2): H404-14, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27233763

RESUMEN

Although it is well-known that excess renin angiotensin system (RAS) activity contributes to the pathophysiology of cardiac and vascular disease, tissue-based expression of RAS genes has given rise to the possibility that intracellularly produced angiotensin II (Ang II) may be a critical contributor to disease processes. An extended form of angiotensin I (Ang I), the dodecapeptide angiotensin-(1-12) [Ang-(1-12)], that generates Ang II directly from chymase, particularly in the human heart, reinforces the possibility that an alternative noncanonical renin independent pathway for Ang II formation may be important in explaining the mechanisms by which the hormone contributes to adverse cardiac and vascular remodeling. This review summarizes the work that has been done in evaluating the functional significance of Ang-(1-12) and how this substrate generated from angiotensinogen by a yet to be identified enzyme enhances knowledge about Ang II pathological actions.


Asunto(s)
Angiotensina II/metabolismo , Angiotensinógeno/metabolismo , Corazón/fisiopatología , Miocardio/metabolismo , Fragmentos de Péptidos/metabolismo , Sistema Renina-Angiotensina , Animales , Quimasas , Humanos , Remodelación Vascular/fisiología , Remodelación Ventricular/fisiología
17.
Biochem Biophys Res Commun ; 478(2): 559-64, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27465904

RESUMEN

We showed previously that rat angiotensin-(1-12) [Ang-(1-12)] is metabolized by chymase and angiotensin converting enzyme (ACE) to generate Angiotensin II (Ang II). Here, we investigated the affinity of cardiac chymase and ACE enzymes for Ang-(1-12) and Angiotensin I (Ang I) substrates. Native plasma membranes (PMs) isolated from heart and lung tissues of adult spontaneously hypertensive rats (SHR) were incubated with radiolabeled (125)I-Ang-(1-12) or (125)I-Ang I, in the absence or presence of a chymase or ACE inhibitor (chymostatin and lisinopril, respectively). Products were quantitated by HPLC connected to an in-line flow-through gamma detector. The rate of (125)I-Ang II formation from (125)I-Ang-(1-12) by chymase was significantly higher (heart: 7.0 ± 0.6 fmol/min/mg; lung: 33 ± 1.2 fmol/min/mg, P < 0.001) when compared to (125)I-Ang I substrate (heart: 0.8 ± 0.1 fmol/min/mg; lung: 2.1 ± 0.1 fmol/min/mg). Substrate affinity of (125)I-Ang-(1-12) for rat cardiac chymase was also confirmed using excess unlabeled Ang-(1-12) or Ang I (0-250 µM). The rate of (125)I-Ang II formation was significantly lower using unlabeled Ang-(1-12) compared to unlabeled Ang I substrate. Kinetic data showed that rat chymase has a lower Km (64 ± 6.3 µM vs 142 ± 17 µM), higher Vmax (13.2 ± 1.3 µM/min/mg vs 1.9 ± 0.2 µM/min/mg) and more than 15-fold higher catalytic efficiency (ratio of Vmax/Km) for Ang-(1-12) compared to Ang I substrate, respectively. We also investigated ACE mediated hydrolysis of (125)I-Ang-(1-12) and (125)I-Ang I in solubilized membrane fractions of the SHR heart and lung. Interestingly, no significant difference in (125)I-Ang II formation by ACE was detected using either substrate, (125)I-Ang-(1-12) or (125)I-Ang I, both in the heart (1.8 ± 0.2 fmol/min/mg and 1.8 ± 0.3 fmol/min/mg, respectively) and in the lungs (239 ± 25 fmol/min/mg and 248 ± 34 fmol/min/mg, respectively). Compared to chymase, ACE-mediated Ang-(1-12) metabolism in the heart was several fold lower. Overall our findings suggest that Ang-(1-12), not Ang I, is the better substrate for Ang II formation by chymase in adult rats. In addition, this confirms our previous observation that chymase (rather than ACE) is the main hydrolyzing enzyme responsible for Ang II generation from Ang-(1-12) in the adult rat heart.


Asunto(s)
Angiotensina II/metabolismo , Angiotensina I/metabolismo , Angiotensinógeno/metabolismo , Quimasas/metabolismo , Miocardio/enzimología , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Animales , Masculino , Miocardio/metabolismo , Ratas , Ratas Endogámicas SHR
18.
Biochem Biophys Res Commun ; 475(1): 81-6, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-27173878

RESUMEN

The molecular mechanisms of muscle weakness and sarcopenia in postmenopausal women are largely unknown. To determine the effect of a new estrogen receptor, GPR30, in the maintenance of exercise capacity and skeletal muscle function in females, the selective GPR30 agonist, G1 (100 µg/kg/day), or vehicle (V, soybean oil) was administered subcutaneously daily (n = 7 per group) to ovariectomized (OVX) 27-month-old Fischer 344 × Brown Norway (F344BN) female rats. Following 8 weeks of treatment, the exercise capacity (treadmill walk time to exhaustion) was reduced in OVX vs. sham rats (5.1 ± 1.4 vs. 11.0 ± 0.9 min, P < 0.05), and chronic G1 restored exercise capacity (12.9 ± 1.2 min; P < 0.05 vs. OVX-V). Similarly, the peak twitch of electrically stimulated soleus muscles was decreased by 22% in OVX vs. sham rats (P < 0.05), and G1 attenuated this decline (P < 0.05). Western blot analysis showed that chronic G1 treatment attenuated OVX-associated decreases in heat shock protein (HSP) 90, HSP70, and HSP27 expressions. In vitro studies using the L6 myoblast cell line demonstrated that G1 increased mRNA levels of HSPs in cultured cells. Collectively, these data demonstrate that the activation of GPR30 mitigates the adverse effects of estrogen loss on exercise capacity and skeletal muscle contractile function in old F344BN rats. The protective effects of GPR30 might be through its upregulation of heat shock proteins in skeletal muscle.


Asunto(s)
Fuerza Muscular , Músculo Esquelético/fisiología , Condicionamiento Físico Animal , Receptores Acoplados a Proteínas G/metabolismo , Animales , Apoptosis , Línea Celular , Estrógenos/metabolismo , Prueba de Esfuerzo , Femenino , Regulación de la Expresión Génica , Proteínas de Choque Térmico/análisis , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Contracción Muscular , Ovariectomía , ARN Mensajero/genética , Ratas Endogámicas BN , Ratas Endogámicas F344 , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/análisis , Receptores Acoplados a Proteínas G/genética
20.
Anesthesiology ; 124(4): 815-25, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26978144

RESUMEN

BACKGROUND: Specific geriatric assessment tools may complement traditional perioperative risk stratification. The aim of this study was to evaluate whether self-reported mobility is predictive of postoperative outcomes in older patients undergoing elective noncardiac surgery. METHODS: Patients aged 69 yr or older (n = 197) underwent (1) traditional risk assessments (American Society of Anesthesiologists physical status classification and Revised Cardiac Risk Index), (2) five-point frailty evaluation, (3) self-reported mobility assessment using the Mobility Assessment Tool-short form (range, 30.21 [poor] to 69.76 [excellent]), and (4) measurements of high-sensitivity C-reactive protein. Outcomes were postoperative complications, time to discharge, and nursing home placement (NHP). RESULTS: In the sample of this study (mean age, 75 ± 5 yr; 51% women), 72% had intermediate- or high-risk surgery. Median time to discharge was 3 days (interquartile range, 1 to 4 days). Thirty patients (15%) developed postoperative complications, and 27 (13%) required NHP. After controlling for age, sex, body mass index, pain score, Revised Cardiac Risk Index, American Society of Anesthesiologist physical status, surgical risk, and high-sensitivity C-reactive protein, worse self-reported mobility (per 10-point decrease in Mobility Assessment Tool, which is equivalent to 1 SD) was associated with more postoperative complications (odds ratio [OR], 1.69; 95% CI, 1.05 to 2.73), later time to discharge (hazards ratio, 0.81; 95% CI, 0.68 to 0.96), and increased NHP (OR, 2.01; 95% CI, 1.13 to 3.56). By using the same model, intermediate frailty or frailty increased NHP (OR, 3.11; 95% CI, 1.02 to 9.54) but was not related to either postoperative complications or time to discharge. CONCLUSIONS: Preoperative self-reported mobility using a novel and brief assessment may help identify elderly patients at risk for adverse postoperative events.


Asunto(s)
Procedimientos Quirúrgicos Electivos , Evaluación Geriátrica/estadística & datos numéricos , Limitación de la Movilidad , Complicaciones Posoperatorias/diagnóstico , Autoinforme , Anciano , Estudios de Cohortes , Femenino , Humanos , Tiempo de Internación/estadística & datos numéricos , Masculino , Oportunidad Relativa , Estudios Prospectivos , Medición de Riesgo/métodos , Medición de Riesgo/estadística & datos numéricos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA