RESUMEN
The APOBEC3 (A3) proteins are host antiviral cellular proteins that hypermutate the viral genome of diverse viral families. In retroviruses, this process requires A3 packaging into viral particles1-4. The lentiviruses encode a protein, Vif, that antagonizes A3 family members by targeting them for degradation. Diversification of A3 allows host escape from Vif whereas adaptations in Vif enable cross-species transmission of primate lentiviruses. How this 'molecular arms race' plays out at the structural level is unknown. Here, we report the cryogenic electron microscopy structure of human APOBEC3G (A3G) bound to HIV-1 Vif, and the hijacked cellular proteins that promote ubiquitin-mediated proteolysis. A small surface explains the molecular arms race, including a cross-species transmission event that led to the birth of HIV-1. Unexpectedly, we find that RNA is a molecular glue for the Vif-A3G interaction, enabling Vif to repress A3G by ubiquitin-dependent and -independent mechanisms. Our results suggest a model in which Vif antagonizes A3G by intercepting it in its most dangerous form for the virus-when bound to RNA and on the pathway to packaging-to prevent viral restriction. By engaging essential surfaces required for restriction, Vif exploits a vulnerability in A3G, suggesting a general mechanism by which RNA binding helps to position key residues necessary for viral antagonism of a host antiviral gene.
Asunto(s)
Desaminasa APOBEC-3G , VIH-1 , Proteolisis , Productos del Gen vif del Virus de la Inmunodeficiencia Humana , Animales , Humanos , Desaminasa APOBEC-3G/antagonistas & inhibidores , Desaminasa APOBEC-3G/química , Desaminasa APOBEC-3G/metabolismo , Desaminasa APOBEC-3G/ultraestructura , VIH-1/metabolismo , VIH-1/patogenicidad , ARN/química , ARN/metabolismo , Ubiquitina/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/ultraestructura , Microscopía por Crioelectrón , Empaquetamiento del Genoma Viral , Primates/virologíaRESUMEN
SARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14. SIRT5 is an NAD-dependent protein deacylase critical for cellular metabolism that removes succinyl and malonyl groups from lysine residues. Here we investigated the nature of this interaction and the role of SIRT5 during SARS-CoV-2 infection. We showed that SIRT5 interacts with Nsp14, but not with Nsp10, suggesting that SIRT5 and Nsp10 are parts of separate complexes. We found that SIRT5 catalytic domain is necessary for the interaction with Nsp14, but that Nsp14 does not appear to be directly deacylated by SIRT5. Furthermore, knock-out of SIRT5 or treatment with specific SIRT5 inhibitors reduced SARS-CoV-2 viral levels in cell-culture experiments. SIRT5 knock-out cells expressed higher basal levels of innate immunity markers and mounted a stronger antiviral response, independently of the Mitochondrial Antiviral Signaling Protein MAVS. Our results indicate that SIRT5 is a proviral factor necessary for efficient viral replication, which opens novel avenues for therapeutic interventions.
Asunto(s)
COVID-19 , Sirtuinas , Antivirales , Exorribonucleasas/metabolismo , Humanos , Lisina , Metiltransferasas/metabolismo , NAD , Provirus , ARN Viral/metabolismo , SARS-CoV-2 , Sirtuinas/genética , Proteínas no Estructurales Virales/metabolismoRESUMEN
Cells organize biochemical processes into biological condensates. P-bodies are cytoplasmic condensates that are enriched in enzymes important for mRNA degradation and have been identified as sites of both storage and decay. How these opposing outcomes can be achieved in condensates remains unresolved. mRNA decapping immediately precedes degradation, and the Dcp1/Dcp2 decapping complex is enriched in P-bodies. Here, we show that Dcp1/Dcp2 activity is modulated in condensates and depends on the interactions promoting phase separation. We find that Dcp1/Dcp2 phase separation stabilizes an inactive conformation in Dcp2 to inhibit decapping. The activator Edc3 causes a conformational change in Dcp2 and rewires the protein-protein interactions to stimulate decapping in condensates. Disruption of the inactive conformation dysregulates decapping in condensates. Our results indicate that the regulation of enzymatic activity in condensates relies on a coupling across length scales ranging from microns to ångstroms. We propose that this regulatory mechanism may control the functional state of P-bodies and related phase-separated compartments.
Asunto(s)
Caperuzas de ARN/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Sitios de Unión , Clonación Molecular , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Estabilidad del ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Coloración y Etiquetado/métodos , Especificidad por SustratoRESUMEN
Multi-subunit cullin-RING ligases (CRLs) are the largest family of ubiquitin E3 ligases in humans. CRL activity is tightly regulated to prevent unintended substrate degradation or autocatalytic degradation of CRL subunits. Using a proteomics strategy, we discovered that CRL4AMBRA1 (CRL substrate receptor denoted in superscript) targets Elongin C (ELOC), the essential adapter protein of CRL5 complexes, for polyubiquitination and degradation. We showed that the ubiquitin ligase function of CRL4AMBRA1 is required to disrupt the assembly and attenuate the ligase activity of human CRL5SOCS3 and HIV-1 CRL5VIF complexes as AMBRA1 depletion leads to hyperactivation of both CRL5 complexes. Moreover, CRL4AMBRA1 modulates interleukin-6/STAT3 signaling and HIV-1 infectivity that are regulated by CRL5SOCS3 and CRL5VIF, respectively. Thus, by discovering a substrate of CRL4AMBRA1, ELOC, the shared adapter of CRL5 ubiquitin ligases, we uncovered a novel CRL cross-regulation pathway.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Elonguina/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Proteolisis , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Elonguina/genética , Células HEK293 , Infecciones por VIH/genética , VIH-1/genética , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
Pat1, known as Pdc2 in fission yeast, promotes the activation and assembly of multiple proteins during mRNA decay. After deadenylation, the Pat1/Lsm1-7 complex binds to transcripts containing oligo(A) tails, which can be modified by the addition of several terminal uridine residues. Pat1 enhances Lsm1-7 binding to the 3' end, but it is unknown how this interaction is influenced by nucleotide composition. Here we examine Pat1/Lsm1-7 binding to a series of oligoribonucleotides containing different A/U contents using recombinant purified proteins from fission yeast. We observe a positive correlation between fractional uridine content and Lsm1-7 binding affinity. Addition of Pat1 broadens RNA specificity of Lsm1-7 by enhancing binding to A-rich RNAs and increases cooperativity on all oligonucleotides tested. Consistent with increased cooperativity, Pat1 promotes multimerization of the Lsm1-7 complex, which is potentiated by RNA binding. Furthermore, the inherent ability of Pat1 to multimerize drives liquid-liquid phase separation with multivalent decapping enzyme complexes of Dcp1/Dcp2. Our results uncover how Pat1 regulates RNA binding and higher order assembly by mRNA decay factors.
Asunto(s)
Estabilidad del ARN/genética , Proteínas de Unión al ARN/genética , ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Factores de Transcripción/genética , Citoplasma/genética , ARN Mensajero/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genéticaRESUMEN
Pat1 is a hub for mRNA metabolism, acting in pre-mRNA splicing, translation repression, and mRNA decay. A critical step in all 5'-3' mRNA decay pathways is removal of the 5' cap structure, which precedes and permits digestion of the RNA body by conserved exonucleases. During bulk 5'-3' decay, the Pat1/Lsm1-7 complex engages mRNA at the 3' end and promotes hydrolysis of the cap structure by Dcp1/Dcp2 at the 5' end through an unknown mechanism. We reconstitute Pat1 with 5' and 3' decay factors and show how it activates multiple steps in late mRNA decay. First, we find that Pat1 stabilizes binding of the Lsm1-7 complex to RNA using two conserved short-linear interaction motifs. Second, Pat1 directly activates decapping by binding elements in the disordered C-terminal extension of Dcp2, alleviating autoinhibition and promoting substrate binding. Our results uncover the molecular mechanism of how separate domains of Pat1 coordinate the assembly and activation of a decapping messenger ribonucleoprotein (mRNP) that promotes 5'-3' mRNA degradation.
Asunto(s)
Proteínas Serina-Treonina Quinasas/fisiología , Estabilidad del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Modelos Moleculares , Complejos Multiproteicos , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Caperuzas de ARN/metabolismo , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia , Homología de Secuencia de AminoácidoRESUMEN
In this issue of Molecular Cell, Jiao et al. (2013) describe the mammalian enzyme DXO, which has pyrophosphohydrolase, decapping, and 5'-3' exoribonuclease activity and functions as an important checkpoint in cotranscriptional capping of RNA polymerase II (Pol II) pre-mRNA transcripts.
RESUMEN
There is a wide gap between the generation of large-scale biological data sets and more-detailed, structural and mechanistic studies. However, recent studies that explicitly combine data from systems and structural biological approaches are having a profound effect on our ability to predict how mutations and small molecules affect atomic-level mechanisms, disrupt systems-level networks, and ultimately lead to changes in organismal fitness. In fact, we argue that a shared framework for analysis of nonadditive genetic and thermodynamic responses to perturbations will accelerate the integration of reductionist and global approaches. A stronger bridge between these two areas will allow for a deeper and more-complete understanding of complex biological phenomenon and ultimately provide needed breakthroughs in biomedical research.
Asunto(s)
Modelos Biológicos , Animales , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Homeostasis , Humanos , Mapas de Interacción de Proteínas , Biología de Sistemas , TermodinámicaRESUMEN
The HIV-1 accessory protein Vif hijacks a cellular Cullin-RING ubiquitin ligase, CRL5, to promote degradation of the APOBEC3 (A3) family of restriction factors. Recently, the cellular transcription cofactor CBFß was shown to form a complex with CRL5-Vif and to be essential for A3 degradation and viral infectivity. We now demonstrate that CBFß is required for assembling a well-ordered CRL5-Vif complex by inhibiting Vif oligomerization and by activating CRL5-Vif via direct interaction. The CRL5-Vif-CBFß holoenzyme forms a well-defined heterohexamer, indicating that Vif simultaneously hijacks CRL5 and CBFß. Heterodimers of CBFß and RUNX transcription factors contribute toward the regulation of genes, including those with immune system functions. We show that binding of Vif to CBFß is mutually exclusive with RUNX heterodimerization and impacts the expression of genes whose regulatory domains are associated with RUNX1. Our results provide a mechanism by which a pathogen with limited coding capacity uses one factor to hijack multiple host pathways.
Asunto(s)
Factor de Unión a CCAAT/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Citosina Desaminasa/metabolismo , Regulación de la Expresión Génica , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasas APOBEC , Secuencia de Aminoácidos , Secuencia de Bases , Factor de Unión a CCAAT/química , Factor de Unión a CCAAT/fisiología , Secuencia de Consenso , Subunidad alfa 2 del Factor de Unión al Sitio Principal/química , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Citidina Desaminasa , Citosina Desaminasa/química , Citosina Desaminasa/fisiología , Expresión Génica , Genes Reporteros , Células HEK293 , VIH-1/fisiología , Interacciones Huésped-Patógeno , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Linfocitos T/metabolismo , Linfocitos T/virología , Ubiquitinación , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/fisiologíaRESUMEN
Changes in the 5' leader of an mRNA can have profound effects on its translational efficiency with little effect on abundance. Sequencing-based methods to accurately map the 5' leader by identifying the first transcribed nucleotide rely on enzymatic removal of the 5' eukaryotic cap structure by tobacco acid pyrophosphatase (TAP). However, commercial TAP production has been problematic and has now been discontinued. RppH, a bacterial enzyme that can also cleave the 5' cap, and Cap-Clip, a plant-derived enzyme, have been marketed as TAP replacements. We have engineered a Schizosaccharomyces pombe Edc1-fused Dcp1-Dcp2 decapping enzyme that functions as a superior TAP replacement. It can be purified from E. coli overexpression in high yields using standard biochemical methods. This constitutively active enzyme is four orders of magnitude more catalytically efficient than RppH at 5' cap removal, compares favorably to Cap-Clip, and the 5' monophosphorylated RNA product is suitable for standard RNA cloning methods. This engineered enzyme is a better replacement for TAP treatment than the current marketed use of RppH and can be produced cost-effectively in a general laboratory setting, unlike Cap-Clip.
Asunto(s)
Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Sitio de Iniciación de la Transcripción , Regiones no Traducidas 5' , Clonación Molecular , Escherichia coli/genética , Ingeniería de Proteínas , Caperuzas de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
The lentiviral protein Viral Infectivity Factor (Vif) counteracts the antiviral effects of host APOBEC3 (A3) proteins and contributes to persistent HIV infection. Vif targets A3 restriction factors for ubiquitination and proteasomal degradation by recruiting them to a multi-protein ubiquitin E3 ligase complex. Here, we describe a degradation-independent mechanism of Vif-mediated antagonism that was revealed through detailed structure-function studies of antibody antigen-binding fragments (Fabs) to the Vif complex. Two Fabs were found to inhibit Vif-mediated A3 neutralization through distinct mechanisms: shielding A3 from ubiquitin transfer and blocking Vif E3 assembly. Combined biochemical, cell biological and structural studies reveal that disruption of Vif E3 assembly inhibited A3 ubiquitination but was not sufficient to restore its packaging into viral particles and antiviral activity. These observations establish that Vif can neutralize A3 family members in a degradation-independent manner. Additionally, this work highlights the potential of Fabs as functional probes, and illuminates how Vif uses a multi-pronged approach involving both degradation dependent and independent mechanisms to suppress A3 innate immunity.
Asunto(s)
Antivirales/farmacología , Citosina Desaminasa/metabolismo , Fragmentos Fab de Inmunoglobulinas/química , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/inmunología , Desaminasas APOBEC , Antivirales/química , Proteínas Cullin/química , Proteínas Cullin/metabolismo , Citidina Desaminasa , Células HEK293 , Infecciones por VIH/inmunología , Infecciones por VIH/terapia , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/metabolismo , Humanos , Ubiquitina/metabolismo , Ubiquitinación , Ensamble de Virus , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/químicaRESUMEN
5' mediated cytoplasmic RNA decay is a conserved cellular process in eukaryotes. While the functions of the structured core domains in this pathway are well-studied, the role of abundant intrinsically disordered regions (IDRs) is lacking. Here we reconstitute the Dcp1:Dcp2 complex containing a portion of the disordered C-terminus and show its activity is autoinhibited by linear interaction motifs. Enhancers of decapping (Edc) 1 and 3 cooperate to activate decapping by different mechanisms: Edc3 alleviates autoinhibition by binding IDRs and destabilizing an inactive form of the enzyme, whereas Edc1 stabilizes the transition state for catalysis. Both activators are required to fully stimulate an autoinhibited Dcp1:Dcp2 as Edc1 alone cannot overcome the decrease in activity attributed to the C-terminal extension. Our data provide a mechanistic framework for combinatorial control of decapping by protein cofactors, a principle that is likely conserved in multiple 5' mRNA decay pathways.
Asunto(s)
Endorribonucleasas/química , ARN Mensajero/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Secuencias de Aminoácidos , Dominio Catalítico , Endorribonucleasas/metabolismo , Modelos Moleculares , Estabilidad del ARN , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismoRESUMEN
Human immunodeficiency virus-1 viral infectivity factor (Vif) is an intrinsically disordered protein responsible for the ubiquitination of the APOBEC3 (A3) antiviral proteins. Vif folds when it binds Cullin-RING E3 ligase 5 and the transcription cofactor CBF-ß. A five-protein complex containing the substrate receptor (Vif, CBF-ß, Elongin-B, Elongin-C (VCBC)) and Cullin5 (CUL5) has a published crystal structure, but dynamics of this VCBC-CUL5 complex have not been characterized. Here, we use molecular dynamics (MD) simulations and NMR to characterize the dynamics of the VCBC complex with and without CUL5 and an A3 protein bound. Our simulations show that the VCBC complex undergoes global dynamics involving twisting and clamshell opening of the complex, whereas VCBC-CUL5 maintains a more static conformation, similar to the crystal structure. This observation from MD is supported by methyl-transverse relaxation-optimized spectroscopy NMR data, which indicates that the VCBC complex without CUL5 is dynamic on the µs-ms timescale. Our NMR data also show that the VCBC complex is more conformationally restricted when bound to the antiviral APOBEC3F (one of the A3 proteins), consistent with our MD simulations. Vif contains a flexible linker region located at the hinge of the VCBC complex, which changes conformation in conjunction with the global dynamics of the complex. Like other substrate receptors, VCBC can exist alone or in complex with CUL5 and other proteins in cells. Accordingly, the VCBC complex could be a good target for therapeutics that would inhibit full assembly of the ubiquitination complex by stabilizing an alternate VCBC conformation.
Asunto(s)
Proteínas Cullin/química , Citidina Desaminasa/química , Simulación de Dinámica Molecular , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química , Desaminasas APOBEC , Subunidad beta del Factor de Unión al Sitio Principal/química , Cristalización , Elonguina/química , Humanos , Cinética , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Relación Estructura-Actividad , UbiquitinaciónRESUMEN
Dcp1/2 is the major eukaryotic RNA decapping complex, comprised of the enzyme Dcp2 and activator Dcp1, which removes the 5' m(7)G cap from mRNA, committing the transcript to degradation. Dcp1/2 activity is crucial for RNA quality control and turnover, and deregulation of these processes may lead to disease development. The molecular details of Dcp1/2 catalysis remain elusive, in part because both cap substrate (m(7)GpppN) and m(7)GDP product are bound by Dcp1/2 with weak (mM) affinity. In order to find inhibitors to use in elucidating the catalytic mechanism of Dcp2, we screened a small library of synthetic m(7)G nucleotides (cap analogs) bearing modifications in the oligophosphate chain. One of the most potent cap analogs, m(7)GpSpppSm(7)G, inhibited Dcp1/2 20 times more efficiently than m(7)GpppN or m(7)GDP. NMR experiments revealed that the compound interacts with specific surfaces of both regulatory and catalytic domains of Dcp2 with submillimolar affinities. Kinetics analysis revealed that m(7)GpSpppSm(7)G is a mixed inhibitor that competes for the Dcp2 active site with micromolar affinity. m(7)GpSpppSm(7)G-capped RNA undergoes rapid decapping, suggesting that the compound may act as a tightly bound cap mimic. Our identification of the first small molecule inhibitor of Dcp2 should be instrumental in future studies aimed at understanding the structural basis of RNA decapping and may provide insight toward the development of novel therapeutically relevant decapping inhibitors.
Asunto(s)
Análogos de Caperuza de ARN/química , Proteínas de Schizosaccharomyces pombe/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , División del ARN , ARN Mensajero/química , Schizosaccharomyces/enzimologíaRESUMEN
Restriction factors, such as the retroviral complementary DNA deaminase APOBEC3G, are cellular proteins that dominantly block virus replication. The AIDS virus, human immunodeficiency virus type 1 (HIV-1), produces the accessory factor Vif, which counteracts the host's antiviral defence by hijacking a ubiquitin ligase complex, containing CUL5, ELOC, ELOB and a RING-box protein, and targeting APOBEC3G for degradation. Here we reveal, using an affinity tag/purification mass spectrometry approach, that Vif additionally recruits the transcription cofactor CBF-ß to this ubiquitin ligase complex. CBF-ß, which normally functions in concert with RUNX DNA binding proteins, allows the reconstitution of a recombinant six-protein assembly that elicits specific polyubiquitination activity with APOBEC3G, but not the related deaminase APOBEC3A. Using RNA knockdown and genetic complementation studies, we also demonstrate that CBF-ß is required for Vif-mediated degradation of APOBEC3G and therefore for preserving HIV-1 infectivity. Finally, simian immunodeficiency virus (SIV) Vif also binds to and requires CBF-ß to degrade rhesus macaque APOBEC3G, indicating functional conservation. Methods of disrupting the CBF-ß-Vif interaction might enable HIV-1 restriction and provide a supplement to current antiviral therapies that primarily target viral proteins.
Asunto(s)
Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Citidina Desaminasa/metabolismo , Productos del Gen vif/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasa APOBEC-3G , Marcadores de Afinidad , Animales , Proteínas Cullin/metabolismo , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Células Jurkat , Macaca mulatta/metabolismo , Macaca mulatta/virología , Espectrometría de Masas , Modelos Biológicos , Unión Proteica , Proteolisis , Virus de la Inmunodeficiencia de los Simios/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Replicación ViralRESUMEN
In order to achieve a persistent infection, viruses must overcome the host immune system. Host restriction factors dominantly block virus transmission, but are subject to down regulation by viral accessory proteins. HIV encodes several accessory factors that overcome different cellular restriction factors. For example, the HIV-1 protein Vif down regulates the human APOBEC3 family of restriction factors by targeting them for proteolysis by the ubiquitin-proteasome pathway. Recently, this function was shown to require the transcription cofactor CBFß, which acts as a template to assist in Vif folding and allow for assembly of an APOBEC3-targeting E3 ligase complex. In uninfected cells, CBFß is an essential binding partner of RUNX transcription factors. By binding CBFß, Vif has also been shown to perturb transcription of genes regulated by the RUNX proteins, including restrictive APOBEC3 family members. Here we review how the link between CBFß and Vif supports transcriptional and post-transcriptional repression of innate immunity. The ability of a single viral protein to coopt multiple host pathways is an economical strategy for a pathogen with limited protein coding capacity to achieve a productive infection.
Asunto(s)
Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Subunidad beta del Factor de Unión al Sitio Principal/inmunología , Citosina Desaminasa/inmunología , Citosina Desaminasa/metabolismo , Infecciones por VIH/inmunología , VIH-1/inmunología , Interacciones Huésped-Patógeno/inmunología , Interacciones Huésped-Patógeno/fisiología , Humanos , Inmunidad Innata/inmunología , Transcripción Genética/inmunología , Transcripción Genética/fisiología , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/inmunologíaRESUMEN
The HIV-1 protein Rev facilitates the nuclear export of intron-containing viral mRNAs by recognizing a structured RNA site, the Rev-response-element (RRE), contained in an intron. Rev assembles as a homo-oligomer on the RRE using its α-helical arginine-rich-motif (ARM) for RNA recognition. One unique feature of this assembly is the repeated use of the ARM from individual Rev subunits to contact distinct parts of the RRE in different binding modes. How the individual interactions differ and how they contribute toward forming a functional complex is poorly understood. Here we examine the thermodynamics of Rev-ARM peptide binding to two sites, RRE stem IIB, the high-affinity site that nucleates Rev assembly, and stem IA, a potential intermediate site during assembly, using NMR spectroscopy and isothermal titration calorimetry (ITC). NMR data indicate that the Rev-IIB complex forms a stable interface, whereas the Rev-IA interface is highly dynamic. ITC studies show that both interactions are enthalpy-driven, with binding to IIB being 20-30 fold tighter than to IA. Salt-dependent decreases in affinity were similar at both sites and predominantly enthalpic in nature, reflecting the roles of electrostatic interactions with arginines. However, the two interactions display strikingly different partitioning between enthalpy and entropy components, correlating well with the NMR observations. Our results illustrate how the variation in binding modes to different RRE target sites may influence the stability or order of Rev-RRE assembly and disassembly, and consequently its function.
Asunto(s)
VIH-1/fisiología , ARN Viral/química , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/química , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Calorimetría , Genes env/genética , VIH-1/química , VIH-1/genética , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , Dominios y Motivos de Interacción de Proteínas , ARN Viral/genética , Termodinámica , Ensamble de Virus/genética , Ensamble de Virus/fisiología , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
Conformational dynamics in bilobed enzymes can be used to regulate their activity. One such enzyme, the eukaryotic decapping enzyme Dcp2, controls the half-life of mRNA by cleaving the 5' cap structure, which exposes a monophosphate that is efficiently degraded by exonucleases. Decapping by Dcp2 is thought to be controlled by an open-to-closed transition involving formation of a composite active site with two domains sandwiching substrate, but many details of this process are not understood. Here, using NMR spectroscopy and enzyme kinetics, we show that Trp43 of Schizosaccharomyces pombe Dcp2 is a conserved gatekeeper of this open-to-closed transition. We find that Dcp2 samples multiple conformations in solution on the millisecond-microsecond timescale. Mutation of the gatekeeper tryptophan abolishes the dynamic behavior of Dcp2 and attenuates coactivation by a yeast enhancer of decapping (Edc1). Our results determine the dynamics of the open-to-closed transition in Dcp2, suggest a structural pathway for coactivation, predict that Dcp1 directly contacts the catalytic domain of Dcp2, and show that coactivation of decapping by Dcp2 is linked to formation of the composite active site.