Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
PLoS Comput Biol ; 20(5): e1012158, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768214

RESUMEN

The self-organization of cells relies on the profound complexity of protein-protein interactions. Challenges in directly observing these events have hindered progress toward understanding their diverse behaviors. One notable example is the interaction between molecular motors and cytoskeletal systems that combine to perform a variety of cellular functions. In this work, we leverage theory and experiments to identify and quantify the rate-limiting mechanism of the initial association between a cargo-bound kinesin motor and a microtubule track. Recent advances in optical tweezers provide binding times for several lengths of kinesin motors trapped at varying distances from a microtubule, empowering the investigation of competing models. We first explore a diffusion-limited model of binding. Through Brownian dynamics simulations and simulation-based inference, we find this simple diffusion model fails to explain the experimental binding times, but an extended model that accounts for the ADP state of the molecular motor agrees closely with the data, even under the scrutiny of penalizing for additional model complexity. We provide quantification of both kinetic rates and biophysical parameters underlying the proposed binding process. Our model suggests that a typical binding event is limited by ADP state rather than physical search. Lastly, we predict how these association rates can be modulated in distinct ways through variation of environmental concentrations and physical properties.


Asunto(s)
Cinesinas , Microtúbulos , Unión Proteica , Cinesinas/metabolismo , Cinesinas/química , Cinética , Microtúbulos/metabolismo , Microtúbulos/química , Biología Computacional , Adenosina Difosfato/metabolismo , Adenosina Difosfato/química , Simulación por Computador , Modelos Biológicos , Difusión
2.
Cell ; 141(2): 304-14, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20403325

RESUMEN

Cytoplasmic dynein is responsible for many aspects of cellular and subcellular movement. LIS1, NudE, and NudEL are dynein interactors initially implicated in brain developmental disease but now known to be required in cell migration, nuclear, centrosomal, and microtubule transport, mitosis, and growth cone motility. Identification of a specific role for these proteins in cytoplasmic dynein motor regulation has remained elusive. We find that NudE stably recruits LIS1 to the dynein holoenzyme molecule, where LIS1 interacts with the motor domain during the prepowerstroke state of the dynein crossbridge cycle. NudE abrogates dynein force production, whereas LIS1 alone or with NudE induces a persistent-force dynein state that improves ensemble function of multiple dyneins for transport under high-load conditions. These results likely explain the requirement for LIS1 and NudE in the transport of nuclei, centrosomes, chromosomes, and the microtubule cytoskeleton as well as the particular sensitivity of migrating neurons to reduced LIS1 expression.


Asunto(s)
Proteínas Portadoras/metabolismo , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Algoritmos , Animales , Bovinos , Chlorocebus aethiops , Humanos , Cinesinas/metabolismo , Lisencefalia/metabolismo , Ratas , Proteínas Recombinantes/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(41): e2206677119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191197

RESUMEN

Regulation of organelle transport by molecular motors along the cytoskeletal microtubules is central to maintaining cellular functions. Here, we show that the ubiquitous tau-related microtubule-associated protein 4 (MAP4) can bias the bidirectional transport of organelles toward the microtubule minus-ends. This is concurrent with MAP4 phosphorylation, mediated by the kinase GSK3ß. We demonstrate that MAP4 achieves this bias by tethering the cargo to the microtubules, allowing it to impair the force generation of the plus-end motor kinesin-1. Consistent with this mechanism, MAP4 physically interacts with dynein and dynactin and, when phosphorylated, associates with the cargo-motor complex through its projection domain. Its phosphorylation coincides with the perinuclear accumulation of organelles, a phenotype that is rescued by abolishing the cargo-microtubule MAP4 tether or by the pharmacological inhibition of dynein, confirming the ability of kinesin to inch along, albeit inefficiently, in the presence of phosphorylated MAP4. These findings have broad biological significance because of the ubiquity of MAP4 and the involvement of GSK3ß in multiple diseases, more specifically in cancer, where the MAP4-dependent redistribution of organelles may be prevalent in cancer cells, as we demonstrate here for mitochondria in lung carcinoma epithelial cells.


Asunto(s)
Dineínas , Cinesinas , Complejo Dinactina/metabolismo , Dineínas/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Orgánulos/metabolismo
4.
Cell ; 135(6): 1098-107, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-19070579

RESUMEN

The microtubule motor kinesin-1 plays central roles in intracellular transport. It has been widely assumed that many cellular cargos are moved by multiple kinesins and that cargos with more motors move faster and for longer distances; concrete evidence, however, is sparse. Here we rigorously test these notions using lipid droplets in Drosophila embryos. We first employ antibody inhibition, genetics, biochemistry, and particle tracking to demonstrate that kinesin-1 mediates plus-end droplet motion. We then measure how variation in kinesin-1 expression affects the forces driving individual droplets and estimate the number of kinesins actively engaged per droplet. Unlike in vitro, increased motor number results in neither longer travel distances nor higher velocities. Our data suggest that cargos in vivo can simultaneously engage multiple kinesins and that transport properties are largely unaffected by variation in motor number. Apparently, higher-order regulatory mechanisms rather than motor number per se dominate cargo transport in vivo.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/citología , Drosophila/metabolismo , Cinesinas/metabolismo , Metabolismo de los Lípidos , Animales , Transporte Biológico , Dineínas/metabolismo , Embrión no Mamífero/metabolismo , Lípidos/química , Óptica y Fotónica/instrumentación , Óptica y Fotónica/métodos
5.
Proc Natl Acad Sci U S A ; 115(3): 537-542, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29295928

RESUMEN

The eukaryotic cell's microtubule cytoskeleton is a complex 3D filament network. Microtubules cross at a wide variety of separation distances and angles. Prior studies in vivo and in vitro suggest that cargo transport is affected by intersection geometry. However, geometric complexity is not yet widely appreciated as a regulatory factor in its own right, and mechanisms that underlie this mode of regulation are not well understood. We have used our recently reported 3D microtubule manipulation system to build filament crossings de novo in a purified in vitro environment and used them to assay kinesin-1-driven model cargo navigation. We found that 3D microtubule network geometry indeed significantly influences cargo routing, and in particular that it is possible to bias a cargo to pass or switch just by changing either filament spacing or angle. Furthermore, we captured our experimental results in a model which accounts for full 3D geometry, stochastic motion of the cargo and associated motors, as well as motor force production and force-dependent behavior. We used a combination of experimental and theoretical analysis to establish the detailed mechanisms underlying cargo navigation at microtubule crossings.


Asunto(s)
Microtúbulos/química , Microtúbulos/metabolismo , Transporte Biológico , Citoesqueleto/metabolismo , Humanos , Imagenología Tridimensional , Cinesinas/química , Cinesinas/metabolismo , Cinética , Modelos Biológicos , Modelos Teóricos , Unión Proteica
6.
Proc Natl Acad Sci U S A ; 115(8): E1779-E1788, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432173

RESUMEN

Numerous posttranslational modifications have been described in kinesins, but their consequences on motor mechanics are largely unknown. We investigated one of these-acetylation of lysine 146 in Eg5-by creating an acetylation mimetic lysine to glutamine substitution (K146Q). Lysine 146 is located in the α2 helix of the motor domain, where it makes an ionic bond with aspartate 91 on the neighboring α1 helix. Molecular dynamics simulations predict that disrupting this bond enhances catalytic site-neck linker coupling. We tested this using structural kinetics and single-molecule mechanics and found that the K146Q mutation increases motor performance under load and coupling of the neck linker to catalytic site. These changes convert Eg5 from a motor that dissociates from the microtubule at low load into one that is more tightly coupled and dissociation resistant-features shared by kinesin 1. These features combined with the increased propensity to stall predict that the K146Q Eg5 acetylation mimetic should act in the cell as a "brake" that slows spindle pole separation, and we have confirmed this by expressing this modified motor in mitotically active cells. Thus, our results illustrate how a posttranslational modification of a kinesin can be used to fine tune motor behavior to meet specific physiological needs.


Asunto(s)
Cinesinas/química , Cinesinas/metabolismo , Mitosis/fisiología , Secuencia de Aminoácidos , Fenómenos Biomecánicos , Células HeLa , Humanos , Modelos Moleculares , Mutación , Conformación Proteica
7.
Traffic ; 18(10): 658-671, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28731566

RESUMEN

The kinesin family proteins are often studied as prototypical molecular motors; a deeper understanding of them can illuminate regulation of intracellular transport. It is typically assumed that they function identically. Here we find that this assumption of homogeneous function appears incorrect: variation among motors' velocities in vivo and in vitro is larger than the stochastic variation expected for an ensemble of "identical" motors. When moving on microtubules, slow and fast motors are persistently slow, and fast, respectively. We develop theory that provides quantitative criteria to determine whether the observed single-molecule variation is too large to be generated from an ensemble of identical molecules. To analyze such heterogeneity, we group traces into homogeneous sub-ensembles. Motility studies varying the temperature, pH and glycerol concentration suggest at least 2 distinct functional states that are independently affected by external conditions. We end by investigating the functional ramifications of such heterogeneity through Monte-Carlo multi-motor simulations.


Asunto(s)
Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Simulación de Dinámica Molecular , Animales , Línea Celular Tumoral , Drosophila , Proteínas de Drosophila/química , Humanos , Cinesinas/química , Movimiento (Física) , Dominios Proteicos
8.
Proc Natl Acad Sci U S A ; 112(48): E6606-13, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627252

RESUMEN

Kinesins perform mechanical work to power a variety of cellular functions, from mitosis to organelle transport. Distinct functions shape distinct enzymologies, and this is illustrated by comparing kinesin-1, a highly processive transport motor that can work alone, to Eg5, a minimally processive mitotic motor that works in large ensembles. Although crystallographic models for both motors reveal similar structures for the domains involved in mechanochemical transduction--including switch-1 and the neck linker--how movement of these two domains is coordinated through the ATPase cycle remains unknown. We have addressed this issue by using a novel combination of transient kinetics and time-resolved fluorescence, which we refer to as "structural kinetics," to map the timing of structural changes in the switch-1 loop and neck linker. We find that differences between the structural kinetics of Eg5 and kinesin-1 yield insights into how these two motors adapt their enzymologies for their distinct functions.


Asunto(s)
Cinesinas/fisiología , Modelos Moleculares , Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Transferencia Resonante de Energía de Fluorescencia , Humanos , Cinesinas/química , Cinética , Microtúbulos/química , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Ovinos , Temperatura
9.
Traffic ; 16(10): 1075-87, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26094820

RESUMEN

Control of intracellular transport is poorly understood, and functional ramifications of tubulin isoform differences between cell types are mostly unexplored. Motors' force production and detachment kinetics are critical for their group function, but how microtubule (MT) details affect these properties--if at all--is unknown. We investigated these questions using both a vesicular transport human kinesin, kinesin-1, and also a mitotic kinesin likely optimized for group function, kinesin-5, moving along either bovine brain or MCF7(breast cancer) MTs. We found that kinesin-1 functioned similarly on the two sets of MTs--in particular, its mean force production was approximately the same, though due to its previously reported decreased processivity, the mean duration of kinesin-1 force production was slightly decreased on MCF7 MTs. In contrast, kinesin-5's function changed dramatically on MCF7 MTs: its average detachment force was reduced and its force-velocity curve was different. In spite of the reduced detachment force, the force-velocity alteration surprisingly improved high-load group function for kinesin-5 on the cancer-cell MTs, potentially contributing to functions such as spindle-mediated chromosome separation. Significant differences were previously reported for C-terminal tubulin tails in MCF7 versus bovine brain tubulin. Consistent with this difference being functionally important, elimination of the tails made transport along the two sets of MTs similar.


Asunto(s)
Microtúbulos/metabolismo , Transporte de Proteínas/fisiología , Animales , Bovinos , Línea Celular Tumoral , Humanos , Cinesinas/metabolismo , Cinética , Células MCF-7 , Tubulina (Proteína)/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(19): 7000-5, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24782540

RESUMEN

Kinesin is the canonical plus-end microtubule motor and has been the focus of intense study since its discovery in 1985. We previously demonstrated a time-dependent inactivation of kinesin in vitro that was fully reversible by the addition of purified casein kinase 2 (CK2) and showed that this inactivation/reactivation pathway was relevant in cells. Here we show that kinesin inactivation results from a conformational change that causes the neck linker to be positioned closer to the motor domain. Furthermore, we show that treatment of kinesin with CK2 prevents and reverses this repositioning. Finally, we demonstrate that CK2 treatment facilitates ADP dissociation from the motor, resulting in a nucleotide-free state that promotes microtubule binding. Thus, we propose that kinesin inactivation results from neck-linker repositioning and that CK2-mediated reactivation results from CK2's dual ability to reverse this repositioning and to promote ADP release.


Asunto(s)
Quinasa de la Caseína II/química , Quinasa de la Caseína II/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Transducción de Señal/fisiología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Activación Enzimática/fisiología , Humanos , Microtúbulos/fisiología , Modelos Moleculares , Estructura Terciaria de Proteína
11.
Proc Natl Acad Sci U S A ; 111(5): 1837-42, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449904

RESUMEN

Kinesins are responsible for a wide variety of microtubule-based, ATP-dependent functions. Their motor domain drives these activities, but the molecular adaptations that specify these diverse and essential cellular activities are poorly understood. It has been assumed that the first identified kinesin--the transport motor kinesin-1--is the mechanistic paradigm for the entire superfamily, but accumulating evidence suggests otherwise. To address the deficits in our understanding of the molecular basis of functional divergence within the kinesin superfamily, we studied kinesin-5s, which are essential mitotic motors whose inhibition blocks cell division. Using cryo-electron microscopy and determination of structure at subnanometer resolution, we have visualized conformations of microtubule-bound human kinesin-5 motor domain at successive steps in its ATPase cycle. After ATP hydrolysis, nucleotide-dependent conformational changes in the active site are allosterically propagated into rotations of the motor domain and uncurling of the drug-binding loop L5. In addition, the mechanical neck-linker element that is crucial for motor stepping undergoes discrete, ordered displacements. We also observed large reorientations of the motor N terminus that indicate its importance for kinesin-5 function through control of neck-linker conformation. A kinesin-5 mutant lacking this N terminus is enzymatically active, and ATP-dependent neck-linker movement and motility are defective, although not ablated. All these aspects of kinesin-5 mechanochemistry are distinct from kinesin-1. Our findings directly demonstrate the regulatory role of the kinesin-5 N terminus in collaboration with the motor's structured neck-linker and highlight the multiple adaptations within kinesin motor domains that tune their mechanochemistries according to distinct functional requirements.


Asunto(s)
Cinesinas/química , Cinesinas/metabolismo , Mitosis , Modelos Moleculares , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Humanos , Hidrólisis , Cinética , Microtúbulos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Eliminación de Secuencia , Relación Estructura-Actividad
12.
Traffic ; 15(7): 762-71, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24673933

RESUMEN

There is an increasing interest in factors that can impede cargo transport by molecular motors inside the cell. Although potentially relevant (Yi JY, Ori-McKenney KM, McKenney RJ, Vershinin M, Gross SP, Vallee RB. High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport. J Cell Biol 2011;195:193-201), the importance of cargo size and subcellular location has received relatively little attention. Here we address these questions taking advantage of the fact that mitochondria - a common cargo - in Drosophila neurons exhibit a wide distribution of sizes. In addition, the mitochondria can be genetically marked with green fluorescent protein (GFP) making it possible to visualize and compare their movement in the cell bodies and in the processes of living cells. Using total internal reflection microscopy coupled with particle tracking and analysis, we quantified the transport properties of GFP-positive mitochondria as a function of their size and location. In neuronal cell bodies, we find little evidence for significant opposition to motion, consistent with a previous study on lipid droplets (Shubeita GT, Tran SL, Xu J, Vershinin M, Cermelli S, Cotton SL, Welte MA, Gross SP. Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 2008;135:1098-1107). However, in the processes, we observe an inverse relationship between the mitochondrial size and velocity and the run distances. This can be ameliorated via hypotonic treatment to increase process size, suggesting that motor-mediated movement is impeded in this more-confined environment. Interestingly, we also observe local mitochondrial accumulations in processes but not in cell bodies. Such accumulations do not completely block the transport but do increase the probability of mitochondria-mitochondria interactions. They are thus particularly interesting in relation to mitochondrial exchange of elements.


Asunto(s)
Mitocondrias/fisiología , Neuronas/metabolismo , Biofisica , Neuronas/citología , Transporte de Proteínas
13.
Proc Natl Acad Sci U S A ; 110(17): E1613-20, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23569236

RESUMEN

The herpesvirus virion is a multilayered structure consisting of a DNA-filled capsid, tegument, and envelope. Detailed reconstructions of the capsid are possible based on its icosahedral symmetry, but the surrounding tegument and envelope layers lack regular architecture. To circumvent limitations of symmetry-based ultrastructural reconstruction methods, a fluorescence approach was developed using single-particle imaging combined with displacement measurements at nanoscale resolution. An analysis of 11 tegument and envelope proteins defined the composition and plasticity of symmetric and asymmetric elements of the virion architecture. The resulting virion protein map ascribes molecular composition to density profiles previously acquired by traditional ultrastructural methods, and provides a way forward to examine the dynamics of the virion architecture during infection.


Asunto(s)
Herpesvirus Suido 1/ultraestructura , Modelos Moleculares , Proteínas Estructurales Virales/metabolismo , Virión/ultraestructura , Animales , Línea Celular , Cromosomas Artificiales Bacterianos , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/metabolismo , Microscopía Fluorescente , Mutagénesis , Porcinos , Proteínas Estructurales Virales/genética , Virión/genética
14.
Biophys J ; 106(4): 813-23, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24559984

RESUMEN

Long-distance intracellular axonal transport is predominantly microtubule-based, and its impairment is linked to neurodegeneration. In this study, we present theoretical arguments that suggest that near the axon boundaries (walls), the effective viscosity can become large enough to impede cargo transport in small (but not large) caliber axons. Our theoretical analysis suggests that this opposition to motion increases rapidly as the cargo approaches the wall. We find that having parallel microtubules close enough together to enable a cargo to simultaneously engage motors on more than one microtubule dramatically enhances motor activity, and thus minimizes the effects of any opposition to transport. Even if microtubules are randomly placed in axons, we find that the higher density of microtubules found in small-caliber axons increases the probability of having parallel microtubules close enough that they can be used simultaneously by motors on a cargo. The boundary effect is not a factor in transport in large-caliber axons where the microtubule density is lower.


Asunto(s)
Transporte Axonal , Axones/metabolismo , Microtúbulos/metabolismo , Modelos Neurológicos , Animales , Humanos , Cinesinas/metabolismo
15.
Biophys J ; 107(6): 1474-84, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25229154

RESUMEN

There is significant interest in quantifying force production inside cells, but since conditions in vivo are less well controlled than those in vitro, in vivo measurements are challenging. In particular, the in vivo environment may vary locally as far as its optical properties, and the organelles manipulated by the optical trap frequently vary in size and shape. Several methods have been proposed to overcome these difficulties. We evaluate the relative merits of these methods and directly compare two of them, a refractive index matching method, and a light-momentum-change method. Since in vivo forces are frequently relatively high (e.g., can exceed 15 pN for lipid droplets), a high-power laser is employed. We discover that this high-powered trap induces local temperature changes, and we develop an approach to compensate for uncertainties in the magnitude of applied force due to such temperature variations.


Asunto(s)
Fenómenos Mecánicos , Pinzas Ópticas , Adenosina Trifosfato/metabolismo , Calibración , Células HEK293 , Humanos , Hidrólisis , Cinesinas/metabolismo , Temperatura
16.
Traffic ; 13(9): 1198-205, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22672518

RESUMEN

Microtubule-based molecular motors often work in small groups to transport cargos in cells. A key question in understanding transport (and its regulation in vivo) is to identify the sensitivity of multiple-motor-based motion to various single molecule properties. Whereas both single-motor travel distance and microtubule binding rate have been demonstrated to contribute to cargo travel, the role of single-motor velocity is yet to be explored. Here, we recast a previous theoretical study, and make explicit a potential contribution of velocity to cargo travel. We test this possibility experimentally, and demonstrate a strong negative correlation between single-motor velocity and cargo travel for transport driven by two motors. Our study thus discovers a previously unappreciated role of single-motor velocity in regulating multiple-motor transport.


Asunto(s)
Cinesinas/metabolismo , Modelos Biológicos , Animales , Microtúbulos/metabolismo , Transporte de Proteínas , Tubulina (Proteína)/metabolismo
17.
Proc Natl Acad Sci U S A ; 108(47): 18960-5, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22084076

RESUMEN

Intracellular transport via the microtubule motors kinesin and dynein plays an important role in maintaining cell structure and function. Often, multiple kinesin or dynein motors move the same cargo. Their collective function depends critically on the single motors' detachment kinetics under load, which we experimentally measure here. This experimental constraint--combined with other experimentally determined parameters--is then incorporated into theoretical stochastic and mean-field models. Comparison of modeling results and in vitro data shows good agreement for the stochastic, but not mean-field, model. Many cargos in vivo move bidirectionally, frequently reversing course. Because both kinesin and dynein are present on the cargos, one popular hypothesis explaining the frequent reversals is that the opposite-polarity motors engage in unregulated stochastic tugs-of-war. Then, the cargos' motion can be explained entirely by the outcome of these opposite-motor competitions. Here, we use fully calibrated stochastic and mean-field models to test the tug-of-war hypothesis. Neither model agrees well with our in vivo data, suggesting that, in addition to inevitable tugs-of-war between opposite motors, there is an additional level of regulation not included in the models.


Asunto(s)
Metabolismo de los Lípidos , Modelos Biológicos , Proteínas Motoras Moleculares/metabolismo , Procesos Estocásticos , Transporte Biológico/fisiología , Simulación por Computador , Cinética
18.
Commun Biol ; 7(1): 311, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472292

RESUMEN

Cells run on initiation of protein-protein interactions, which are dynamically tuned spatially and temporally to modulate cellular events. This tuning can be physical, such as attaching the protein to a cargo or protein complex, thereby altering its diffusive properties, or modulating the distance between protein pairs, or chemical, by altering the proteins' conformations (e.g., nucleotide binding state of an enzyme, post-translational modification of a protein, etc.). Because a dynamic and changing subset of proteins in the cell could be in any specific state, ensemble measurements are not ideal-to untangle which of the factors are important, and how, we need single-molecule measurements. Experimentally, until now we have not had good tools to precisely measure initiation of such protein-protein interactions at the single-molecule level. Here, we develop a new method to measure dynamics of initial protein-protein interactions, allowing measurement of how properties such as the distance between proteins, and their tethered length can modulate the rate of interactions. In addition to precise measurement distance dependent motor-MT rebinding dynamics, we demonstrate the use of a dithered optical trap to measure dynamic motor-MT interactions and further discuss the possibilities of this technique being applicable to other systems.


Asunto(s)
Comunicación Celular , Proteínas , Proteínas/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional
19.
PLoS One ; 19(1): e0295627, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38252641

RESUMEN

The spore-forming intestinal pathogen Clostridioides difficile causes multidrug resistant infection with a high rate of recurrence after treatment. Piscidins 1 (p1) and 3 (p3), cationic host defense peptides with micromolar cytotoxicity against C. difficile, sensitize C. difficile to clinically relevant antibiotics tested at sublethal concentrations. Both peptides bind to Cu2+ using an amino terminal copper and nickel binding motif. Here, we investigate the two peptides in the apo and holo states as antibiotic adjuvants against an epidemic strain of C. difficile. We find that the presence of the peptides leads to lower doses of metronidazole, vancomycin, and fidaxomicin to kill C. difficile. The activity of metronidazole, which targets DNA, is enhanced by a factor of 32 when combined with p3, previously shown to bind and condense DNA. Conversely, the activity of vancomycin, which acts at bacterial cell walls, is enhanced 64-fold when combined with membrane-active p1-Cu2+. As shown through microscopy monitoring the permeabilization of membranes of C. difficile cells and vesicle mimics of their membranes, the adjuvant effect of p1 and p3 in the apo and holo states is consistent with a mechanism of action where the peptides enable greater antibiotic penetration through the cell membrane to increase their bioavailability. The variations in effects obtained with the different forms of the peptides reveal that while all piscidins generally sensitize C. difficile to antibiotics, co-treatments can be optimized in accordance with the underlying mechanism of action of the peptides and antibiotics. Overall, this study highlights the potential of antimicrobial peptides as antibiotic adjuvants to increase the lethality of currently approved antibiotic dosages, reducing the risk of incomplete treatments and ensuing drug resistance.


Asunto(s)
Antibacterianos , Clostridioides difficile , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Vancomicina/farmacología , Metronidazol , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Clostridioides , ADN
20.
Traffic ; 12(11): 1483-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21801290

RESUMEN

Caveolin (CAV) is an essential component of caveolae, cholesterol-enriched invaginations of the plasma membrane of most mammalian cells. However, CAV is not restricted to plasma membrane caveolae, and pools of CAV are present in myriad intracellular membranes. CAV proteins tightly bind cholesterol and contribute to regulation of cholesterol fluxes and distributions within cells. In this context, we recently showed that CAV1 regulates the poorly understood process controlling mitochondrial cholesterol levels. Cholesterol accumulates in mitochondrial membranes in the absence of CAV1, promoting the organelle's dysfunction with important metabolic consequences for cells and animals. In this article, we suggest a working hypothesis that addresses the role of CAV1 within the homeostatic network that regulates the influx/efflux of mitochondrial cholesterol.


Asunto(s)
Caveolina 1/metabolismo , Colesterol/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Caveolas/metabolismo , Homeostasis , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA