Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 21(14)2020 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-32707661

RESUMEN

A poor socioeconomic environment and social adversity are fundamental determinants of human life span, well-being and health. Previous influenza pandemics showed that socioeconomic factors may determine both disease detection rates and overall outcomes, and preliminary data from the ongoing coronavirus disease (COVID-19) pandemic suggests that this is still true. Over the past years it has become clear that early-life adversity (ELA) plays a critical role biasing the immune system towards a pro-inflammatory and senescent phenotype many years later. Cytotoxic T-lymphocytes (CTL) appear to be particularly sensitive to the early life social environment. As we understand more about the immune response to SARS-CoV-2 it appears that a functional CTL (CD8+) response is required to clear the infection and COVID-19 severity is increased as the CD8+ response becomes somehow diminished or exhausted. This raises the hypothesis that the ELA-induced pro-inflammatory and senescent phenotype may play a role in determining the clinical course of COVID-19, and the convergence of ELA-induced senescence and COVID-19 induced exhaustion represents the worst-case scenario with the least effective T-cell response. If the correct data is collected, it may be possible to separate the early life elements that have made people particularly vulnerable to COVID-19 many years later. This will, naturally, then help us identify those that are most at risk from developing the severest forms of COVID-19. In order to do this, we need to recognize socioeconomic and early-life factors as genuine medically and clinically relevant data that urgently need to be collected. Finally, many biological samples have been collected in the ongoing studies. The mechanisms linking the early life environment with a defined later-life phenotype are starting to be elucidated, and perhaps hold the key to understanding inequalities and differences in the severity of COVID-19.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Susceptibilidad a Enfermedades/inmunología , Neumonía Viral/inmunología , Clase Social , Estrés Psicológico/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Disparidades en Atención de Salud , Humanos , Pandemias , Neumonía Viral/tratamiento farmacológico , Factores de Riesgo , SARS-CoV-2 , Factores Socioeconómicos
2.
Arch Toxicol ; 93(10): 2849-2862, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31428841

RESUMEN

Human biomonitoring provides information about chemicals measured in biological matrices, but their interpretation remains uncertain because of pharmacokinetic (PK) interactions. This study examined the PKs in blood from Long-Evans rats after a single oral dose of 0.4 mg/kg bw of each pesticide via a mixture of the 17 pesticides most frequently measured in humans. These pesticides are ß-endosulfan; ß-hexachlorocyclohexane [ß-HCH]; γ-hexachlorocyclohexane [γ-HCH]; carbofuran; chlorpyrifos; cyhalothrin; cypermethrin; diazinon; dieldrin; diflufenican; fipronil; oxadiazon; pentachlorophenol [PCP]; permethrin; 1,1-dichloro-2,2bis(4-chlorophenyl)ethylene [p,p'-DDE]; 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane [p,p'-DDT]; and trifluralin. We collected blood at 10 min to 48-h timepoints in addition to one sample before gavage (for a control). We used GS-MS/MS to measure the pesticide (parents and major metabolites) concentrations in plasma, determined the PK parameters from 20 sampling timepoints, and analyzed the food, litter, and cardboard in the rats' environment for pesticides. We detected many parents and metabolites pesticides in plasma control (e.g., diethyl phosphate [DEP]; PCP; 3-phenoxybenzoic acid [3-PBA]; 3,5,6-trichloro-2-pyridinol [TCPy], suggesting pre-exposure contamination. The PK values post-exposure showed that the AUC0-∞ and Cmax were highest for TCPy and PCP; ß-endosulfan, permethrin, and trifluralin presented the lowest values. Terminal T1/2 and MRT for γ-HCH and ß-HCH ranged from 74.5 h to 117.1 h; carbofuran phenol presented the shortest values with 4.3 h and 4.8 h. These results present the first PK values obtained through a realistic pattern applied to a mixture of 17 pesticides to assess exposure. This study also highlights the issues of background exposure and the need to work with a relevant mixture found in human matrices.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Plaguicidas/farmacocinética , Administración Oral , Animales , Monitoreo Biológico , Cromatografía de Gases , Femenino , Humanos , Ratas , Ratas Long-Evans , Espectrometría de Masas en Tándem
3.
Arch Toxicol ; 92(10): 3061-3075, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30159663

RESUMEN

Alongside the analysis of urinary metabolites which are traditional biomarkers of polycyclic aromatic hydrocarbons (PAH) exposure, the possibility of detecting PAH as well as their metabolites in hair has also recently been demonstrated. As the concentration of pollutants detected in hair is not impacted by short-term variations in exposure as can be observed with urine, it accurately represents an individual's average level of exposure, which is the most relevant information when investigating possible linkages with biological effects. In the current study, based on a rat model exposed to a mixture of PAHs for a 90-day period, the linkage between the PAH exposure level and the resulting concentration of their metabolites in hair was then investigated. The linkage between exposure levels and the concentrations of OH-PAH in hair collected at the end of the experiment were compared to those obtained using urinary concentration of OH-PAH collected from the same animals. Linear relationship between levels of exposure and the concentration of OH-PAH in the rats' hair (R2 0.722-0.965, p < 0.001) was observed for 28 OH-PAH out of the 54 investigated. The difference in PAH concentration between the different groups of exposure and the possibility to back determine the animals' level of exposure on the basis of PAH-metabolite concentrations in both hair and urine was also demonstrated. In addition to the strong linear relation observed between the doses of exposure and the levels of concentration of hydroxylated metabolites in hair (p < 0.001), the analysis of a subset of animals demonstrated a linkage between 3-OH-benzo[a]pyrene concentration levels in hair and the levels of B[a]P-DNA adduct formed (p < 0.05), thereby suggesting the potential of their analysis to predict genetic alteration.


Asunto(s)
Aductos de ADN/sangre , Exposición a Riesgos Ambientales/análisis , Cabello/química , Hidrocarburos Policíclicos Aromáticos/análisis , Animales , Benzopirenos/análisis , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/análisis , Femenino , Cabello/efectos de los fármacos , Hidrocarburos Policíclicos Aromáticos/administración & dosificación , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/orina , Ratas Long-Evans
5.
Arch Toxicol ; 91(8): 2813-2825, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28011991

RESUMEN

Urine and plasma have been used to date for the biomonitoring of exposure to pollutants and are still the preferred fluids for this purpose; however, these fluids mainly provide information on the short term and may present a high level of variability regarding pesticide concentrations, especially for nonpersistent compounds. Hair analysis may provide information about chronic exposure that is averaged over several months; therefore, this method has been proposed as an alternative to solely relying on these fluids. Although the possibility of detecting pesticides in hair has been demonstrated over the past few years, the unknown linkage between exposure and pesticides concentration in hair has limited the recognition of this matrix as a relevant tool for assessing human exposure. Based on a rat model in which there was controlled exposure to a mixture of pesticides composed of lindane, ß-hexachlorocyclohexane, ß-endosulfan, p,p'-DDT, p,p'-DDE, dieldrin, pentachlorophenol, diazinon, chlorpyrifos, cyhalothrin, permethrin, cypermethrin, propiconazole, fipronil, oxadiazon, diflufenican, trifluralin, carbofuran, and propoxur, the current work demonstrates the association between exposure intensity and resulting pesticide concentration in hair. We also compared the results obtained from a hair analysis to urine and plasma collected from the same rats. Hair, blood, and urine were collected from rats submitted to 90-day exposure by gavage to the aforementioned mixture of common pesticides at different levels. We observed a linear relationship between exposure intensity and the concentration of pesticides in the rats' hair (R Pearson 0.453-0.978, p < 0.01). A comparison with results from urine and plasma samples demonstrated the relevance of hair analysis and, for many chemicals, its superiority over using fluids for differentiating animals from different groups and for re-attributing animals to their correct groups of exposure based on pesticide concentrations in the matrix. Therefore, this study strongly supports hair analysis as a reliable tool to be used during epidemiological studies to investigate exposure-associated adverse health effects.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Cabello/química , Plaguicidas/análisis , Animales , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/farmacocinética , Femenino , Plaguicidas/farmacocinética , Ratas , Ratas Long-Evans , Reproducibilidad de los Resultados
6.
Anal Bioanal Chem ; 408(13): 3601-12, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26968562

RESUMEN

Although the relationship between chemical intake and resulting concentration in hair remains incompletely elucidated, the transfer from blood to hair bulb living cells is generally considered the main route of incorporation. The present work investigated the correlation between blood and hair concentration of 23 pesticides/metabolites from different chemical classes in rats submitted to chronic controlled exposure. Long-Evans rats were administered pesticides by gavage three times per week over a 90-day period. After hair sample decontamination, pulverization, and extraction, compounds were analyzed by gas chromatography tandem mass spectrometry (GC-MS/MS). Blood was collected at sacrifice, immediately turned into plasma, and analyzed after extraction for the same compounds by GC-MS/MS. The data obtained for all the investigated compounds demonstrated significant association between plasma and hair concentrations (P value of 2.97E-45 and R(Pearson) of 0.875), with the exception of three outliers. For all the target compounds, water solubility, lipophilicity, molecular weight, and charge were therefore investigated in order to understand the role of these parameters in outliers' specific behavior. Although a possible change in the charge through the transfer from blood to hair might be suspected for two outliers, on the whole the physicochemical parameters investigated here did not seem to influence incorporation of chemicals into hair. Our results support that the concentration of chemicals in hair mainly depends on the respective concentration in plasma and suggest that for most compounds, the transfer from blood to hair would not represent a limiting step in the incorporation.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Cabello/química , Plaguicidas/análisis , Espectrometría de Masas en Tándem/métodos , Animales , Límite de Detección , Plaguicidas/sangre , Ratas , Ratas Long-Evans
7.
Anal Bioanal Chem ; 408(8): 1997-2008, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26842747

RESUMEN

A first gas chromatography-tandem mass spectrometry (GC-MS/MS) method was designed for analysis of four tetrahydroxylated benzo[a]pyrene metabolites (benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydrotetrol, benzo[a]pyrene-r-7,t-8,t-9,t-10-tetrahydrotetrol, benzo[a]pyrene-r-7,t-8,c-9,c-10-tetrahydrotetrol, and benzo[a]pyrene-r-7,t-8,c-9,t-10-tetrahydrotetrol) in hair. Hair powder extract was submitted to liquid-solid extraction, followed by C18 solid-phase purification. The analytes were derivatized with use of N-methyl-N-(trimethylsilyl)trifluoroacetamide and then analyzed by GC-MS/MS in negative chemical ionization mode. The calibration curve was linear from the limit of quantification (LOQ) to 20 pg/mg in hair. The coefficient of determination of the calibration curve was more than 0.975 for all the analytes investigated. The LOQs ranged from 0.075 to 0.2 pg/mg in hair. The method was afterward applied to the analysis of hair of 16 rats randomly allocated to experimental groups receiving 16 polycyclic aromatic hydrocarbons solubilized in oil at 0 or 0.8 mg/kg body weight by oral administration three times per week for 90 days. The analysis of monohydroxylated and dihydroxylated benzo[a]pyrenes was conducted in parallel by GC-MS/MS on the same samples. All tetrahydroxylated benzo[a]pyrene isomers were detected in hair samples collected from rats exposed to polycyclic aromatic hydrocarbons. Benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydrotetrol, the most abundant isomer in hair of treated rats, was also the principal isomer released in DNA adduct hydrolysis in humans. Moreover, the benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydrotetrol concentrations in hair were significantly greater than those of 2-hydroxybenzo[a]pyrene, 1-hydroxybenzo[a]pyrene, 7-hydroxybenzo[a]pyrene, and 4-hydroxybenzo[a]pyrene and similar to those of 9-hydroxybenzo[a]pyrene and 3-hydroxybenzo[a]pyrene. The method was also sufficiently sensitive to monitor environmental levels of exposure because two hair specimens in the eight analyzed from smokers were above the LOQ for benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydrotetrol and benzo[a]pyrene-r-7,t-8,c-9,t-10-tetrahydrotetrol. This study therefore demonstrated that tetrahydroxylated benzo[a]pyrenes in hair might be a useful biomarker for the assessment of both the general population and occupationally exposed workers.


Asunto(s)
Benzo(a)pireno/análisis , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Cabello/química , Adulto , Animales , Benzo(a)pireno/análogos & derivados , Biomarcadores/análisis , Niño , Femenino , Humanos , Hidroxilación , Isomerismo , Límite de Detección , Masculino , Persona de Mediana Edad , Ratas , Ratas Long-Evans , Adulto Joven
8.
Neurosci Biobehav Rev ; 164: 105785, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945418

RESUMEN

Exposure to different environmental factors, social and socioeconomic factors promotes development of the early-life adversity (ELA) phenotype. The persistence of this phenotype across generations is an interesting phenomenon that remains unexplored. Of late many studies have focused on disease-associated outcomes of ELA following exposure during childhood but the persistence of epigenetic imprints transmitted by ELA exposed parents to their offspring remains poorly described. It is possible that both parents are able to transmit ELA-associated genetic imprints to their offspring via transgenerational inheritance mechanisms. Here, we highlight the role of the mother and father in the biological process of conception, from epigenetic reprogramming cycles to later environmental exposures. We explain some of the known determinants of ELA (pollution, socioeconomic challenges, infections, etc.) and their disease-associated outcomes. Finally, we highlight the role of epigenetics, mitochondria and ncRNAs as mechanisms mediating transgenerational inheritance. Whether these transgenerational inheritance mechanisms occur in the human context remains unclear but there is a large body of suggestive evidence in non-human models that points out to its existence.

9.
Environ Int ; 183: 108409, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38185044

RESUMEN

Persistent pollutants, namely brominated flame retardants (BFRs) and heavy metals, are compounds that are added to a wide range of products and materials for preventing ignition, increasing the functionality of materials or improving their performance, e.g. electric conductivity. The exposure of children might consequently be inferred, through indoor dust and hand-to-mouth or toy-chewing behaviors. The current study is aimed at assessing the exposure of Moroccan children to BFRs and heavy metal elements, and evaluating their associations with global DNA methylation. First, parents responded to a questionnaire pertaining to children's lifestyle, then blood and urine samples were collected from (n = 93) children aged between 5 and 11 years for biomonitoring and DNA methylation analysis. BFRs were detected in 54.84% of samples with a median concentration of 0.01 nmol/mL (range: 0.004-0.051 nmol/mL) while metal elements were detected in more than 90% of samples. BFRs showed no variations with global DNA methylation, unlike metal elements, which revealed significant associations with global DNA methylation markers, namely 5-mC, 5-hmC and N6-mA levels. Moroccan children may be exposed to flame retardants and heavy metals through several routes. Further research is required to assess the exposure and the health impacts of environmental pollutants and ultimately protect the Moroccan population by the prevention of adverse health effects.


Asunto(s)
Contaminación del Aire Interior , Contaminantes Ambientales , Retardadores de Llama , Hidrocarburos Bromados , Metales Pesados , Niño , Humanos , Preescolar , Retardadores de Llama/análisis , Marruecos , Contaminación del Aire Interior/análisis , Éteres Difenilos Halogenados/análisis , Contaminantes Ambientales/análisis , Polvo/análisis , Metales Pesados/análisis , Adenina/análisis , Monitoreo del Ambiente , Exposición a Riesgos Ambientales/análisis , Hidrocarburos Bromados/análisis
10.
Sci Rep ; 14(1): 5898, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467724

RESUMEN

Early-life adversity covers a range of physical, social and environmental stressors. Acute viral infections in early life are a major source of such adversity and have been associated with a broad spectrum of later-life effects outside the immune system or "off-target". These include an altered hypothalamus-pituitary-adrenal (HPA) axis and metabolic reactions. Here, we used a murine post-natal day 14 (PND 14) Influenza A (H1N1) infection model and applied a semi-holistic approach including phenotypic measurements, gene expression arrays and diffusion neuroimaging techniques to investigate HPA axis dysregulation, energy metabolism and brain connectivity. By PND 56 the H1N1 infection had been resolved, and there was no residual gene expression signature of immune cell infiltration into the liver, adrenal gland or brain tissues examined nor of immune-related signalling. A resolved early-life H1N1 infection had sex-specific effects. We observed retarded growth of males and altered pre-stress (baseline) blood glucose and corticosterone levels at PND42 after the infection was resolved. Cerebral MRI scans identified reduced connectivity in the cortex, midbrain and cerebellum that were accompanied by tissue-specific gene expression signatures. Gene set enrichment analysis confirmed that these were tissue-specific changes with few common pathways. Early-life infection independently affected each of the systems and this was independent of HPA axis or immune perturbations.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Femenino , Masculino , Animales , Ratones , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/metabolismo , Transcriptoma , Estrés Psicológico/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Corticosterona
11.
Front Toxicol ; 6: 1339104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38654939

RESUMEN

As a complex system governing and interconnecting numerous functions within the human body, the immune system is unsurprisingly susceptible to the impact of toxic chemicals. Toxicants can influence the immune system through a multitude of mechanisms, resulting in immunosuppression, hypersensitivity, increased risk of autoimmune diseases and cancer development. At present, the regulatory assessment of the immunotoxicity of chemicals relies heavily on rodent models and a limited number of Organisation for Economic Co-operation and Development (OECD) test guidelines, which only capture a fraction of potential toxic properties. Due to this limitation, various authorities, including the World Health Organization and the European Food Safety Authority have highlighted the need for the development of novel approaches without the use of animals for immunotoxicity testing of chemicals. In this paper, we present a concise overview of ongoing efforts dedicated to developing and standardizing methodologies for a comprehensive characterization of the immunotoxic effects of chemicals, which are performed under the EU-funded Partnership for the Assessment of Risk from Chemicals (PARC).

12.
Toxicol Appl Pharmacol ; 271(2): 175-83, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23684556

RESUMEN

Benzo[a]pyrene (B[a]P) is a small molecular weight carcinogen and the prototype of polycyclic aromatic hydrocarbons (PAHs). While these compounds are primarily known for their carcinogenicity, B[a]P and its metabolites are also neurotoxic for mammalian species. To develop a prophylactic immune strategy against detrimental effects of B[a]P, female Balb/c mice immunized with a B[a]P-diphtheria toxoid (B[a]P-DT) conjugate vaccine were sub-acutely exposed to 2mg/kg B[a]P and behavioral performances were monitored in tests related to learning and memory, anxiety and motor coordination. mRNA expression of the NMDA receptor (NR1, 2A and 2B subunits) involved in the above behavioral functions was measured in 5 brain regions. B[a]P induced NMDA1 expression in three (hippocampus, amygdala and cerebellum) of five brain regions investigated, and modulated NMDA2 in two of the five brain regions (frontal cortex and cerebellum). Each one of these B[a]P-effects was reversed in mice that were immunized against this PAH, with measurable consequences on behavior such as anxiety, short term learning and memory. Thus active immunization against B[a]P with a B[a]P-DT conjugate vaccine had a protective effect and attenuated the pharmacological and neurotoxic effects even of high concentrations of B[a]P.


Asunto(s)
Benzo(a)pireno/toxicidad , Toxoide Diftérico/uso terapéutico , Contaminantes Ambientales/efectos adversos , Inmunotoxinas/uso terapéutico , Síndromes de Neurotoxicidad/prevención & control , Animales , Ansiedad/inducido químicamente , Ansiedad/prevención & control , Ansiedad/psicología , Benzo(a)pireno/farmacocinética , Peso Corporal/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Toxoide Diftérico/química , Femenino , Inmunización , Inmunotoxinas/química , Aprendizaje por Laberinto/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Actividad Motora/efectos de los fármacos , Síndromes de Neurotoxicidad/inmunología , Ovalbúmina , Desempeño Psicomotor/efectos de los fármacos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de N-Metil-D-Aspartato/biosíntesis
13.
Anal Bioanal Chem ; 405(27): 8897-911, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24013637

RESUMEN

A method based on gas chromatography-tandem mass spectrometry after derivatization with N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide was developed for the analysis of monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in hair. The method focused on 52 target compounds corresponding to two- to six-ring monohydroxylated metabolites of polycyclic aromatic hydrocarbons (PAHs). The limits of quantification ranged from 0.2 to 50 pg mg(-1). The method was then applied to the analysis of hair samples collected from rats exposed to 12 PAHs at 0.01, 0.1, and 1 mg kg(-1), by intraperitoneal injection, for 28 days. The results of this study confirm that these metabolites can be incorporated in hair after intraperitoneal administration of the corresponding parent compound. Only 20 of the 52 metabolites were actually detected in hair samples and corresponded to nine parent PAHs. The mean concentrations of OH-PAHs in rat hair samples exposed to PAHs at 1 mg kg(-1) ranged from 0.6 ± 0.2 pg mg(-1) for 8-hydroxybenzo[b]fluoranthene to 6.7 ± 1.0 pg mg(-1) for 1-hydroxypyrene. The results also demonstrated that hair pigmentation has no influence on the concentration of most OH-PAHs. This animal experiment confirmed the incorporation of PAH metabolites in hair and demonstrated that the method was sufficiently sensitive to detect low levels of exposure to PAHs. These results confirmed the usefulness of hair analysis in the biomonitoring of human exposure to PAHs.


Asunto(s)
Contaminantes Ambientales/aislamiento & purificación , Cabello/química , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Acetamidas/química , Animales , Fluoroacetatos/química , Cromatografía de Gases y Espectrometría de Masas , Cabello/metabolismo , Hidroxilación , Inyecciones Intraperitoneales , Límite de Detección , Masculino , Compuestos de Organosilicio/química , Pigmentación , Ratas , Reproducibilidad de los Resultados
14.
Environ Int ; 178: 108103, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494814

RESUMEN

There is a growing evidence that methylation at the N6 position of adenine (6-mA), whose modulation occurs primarily during development, would be a reliable epigenetic marker in eukaryotic organisms. The present study raises the question as to whether early-life exposure to α-hexabromocyclododecane (α-HBCDD), a brominated flame retardant, may trigger modifications in 6-mA epigenetic hallmarks in the brain during the development which, in turn could affect the offspring behaviour in adulthood. Pregnant Wistar rats were split into two groups: control and α-HBCDD (66 ng/kg/per os, G0-PND14). At PND1, α-HBCDD levels were assessed in brain and liver by LC-MS/MS. At PND14, DNA was isolated from the offspring's cerebellum. DNA methylation was measured by 6-mA-specific immunoprecipitation and Illumina® sequencing (MEDIP-Seq). Locomotor activity was finally evaluated at PND120. In our early-life exposure model, we confirmed that α-HBCDD can cross the placental barrier and be detected in pups at birth. An obvious post-exposure phenotype with locomotor deficits was observed when the rats reached adulthood. This was accompanied by sex-specific over-methylation of genes involved in the insulin signaling pathway, MAPK signaling pathway as well as serotonergic and GABAergic synapses, potentially altering the normal process of neurodevelopment with consequent motor impairments crystalized at adulthood.


Asunto(s)
Retardadores de Llama , Hidrocarburos Bromados , Masculino , Animales , Ratas , Femenino , Embarazo , Cromatografía Liquida , Ratas Wistar , Placenta/metabolismo , Espectrometría de Masas en Tándem , Hidrocarburos Bromados/toxicidad , Hidrocarburos Bromados/metabolismo , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo , Cerebelo/metabolismo , Epigénesis Genética
15.
Toxics ; 10(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35448441

RESUMEN

Evidence is now growing that exposure to environmental pollutants during the critical early-life period of brain development may contribute to the emergence of Autism Spectrum Disorders (ASD). This study seeks to compare the developmental neurotoxicity of the α-isomer of hexabromocyclododecane (α-HBCDD), a persistent brominated flame retardant, to the valproic acid (VPA) model of ASD in rodents. Pregnant Wistar rats were divided into three groups: control, α-HBCDD (100 ng/kg/day p.o., GD0-PND21) and VPA (600 mg/kg i.p., GD12). Male offspring were tested for their neuromotor development from PND2-21. At PND21, brain functionality was assessed by measuring cytochrome oxidase activity (CO). Modifications in neuroglia and synaptic plasticity were evaluated in the cortex. Similar subtle behavioural changes related to neuromotor maturation and noise reaction were observed in both treated groups. At PND21, a reduction in CO activity was measured in the VPA group only, in specific areas including auditory nuclei, visual cortex, cingulate and frontal cortices. At the same age, α-HBCDD pointed out significant overexpression of cortical markers of synaptic plasticity while both treated groups showed a significant under expression of astrocyte proteins (S100-ß and GFAP). Early-life exposure to a low dose of α-HBCDD may trigger neurobehavioural alterations in line with ASD.

16.
Chem Res Toxicol ; 24(10): 1653-67, 2011 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-21916506

RESUMEN

An efficient and selective method for the quantitative determination of polycyclic aromatic hydrocarbons (PAHs) and their monohydroxylated metabolites (OH-PAHs) in rat brain tissue using gas chromatography tandem (triple quadrupole) mass spectrometry (GC-MS/MS) was developed and validated. The list of molecules investigated comprised the 16 PAHs from the US-EPA list and 53 of their OH-PAHs. Brain extract was submitted to enzymatic hydrolysis, followed by liquid-liquid extraction, and then purified by solid-phase extraction. Limits of quantification ranged from 0.6 to 29 pg/mg and from 0.5 to 30 pg/mg for PAHs and OH-PAHs respectively. The analysis of rat brain samples exposed to PAH mixture (0.01-1 mg/kg, 28 days, ip) demonstrated that this method allowed the detection of 16 PAHs and 28 OH-PAHs out of the 69 analytes investigated. Mean concentrations of PAHs in animal brain samples exposed to 1 mg/kg of PAH mixture ranged from 3.0 ± 2 pg/mg for benzo[b]fluoranthene to 146 ± 29 pg/mg for phenanthrene. Concomitantly, mean concentrations of OH-PAHs ranged from 0.49 ± 0.4 to 26.5 ± 23 pg/mg for 2-OH-chrysene and 1-OH-pyrene respectively. This study proves, for the first time, the bioavailability of most of the PAHs and OH-PAHs in mammalian brain tissue and should provide an important new tool for future neurotoxicological studies.


Asunto(s)
Encéfalo/metabolismo , Contaminantes Ambientales/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Espectrometría de Masas en Tándem/métodos , Animales , Disponibilidad Biológica , Contaminantes Ambientales/farmacocinética , Hidroxilación , Masculino , Hidrocarburos Policíclicos Aromáticos/farmacocinética , Ratas , Reproducibilidad de los Resultados
17.
Toxics ; 9(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800341

RESUMEN

The potent neurotoxicity of benzo[a]pyrene (B[a]P) has been suggested to be a susceptibility factor accelerating the onset of brain tumours and the emergence of neurobehavioural disturbances. B[a]P has been shown to be neurotoxic, acting directly on both the central and peripheral nervous systems, as well as indirectly via peripheral organs like liver and gut. By using a realistic B[a]P exposure scenario (0.02-200 mg/kg/day, 10 days) in mice, we elucidated brain-specific B[a]P metabolism and at identified hydroxylated B[a]P metabolites in serum which could be used as markers of cognitive impairment. Repeated oral administration of B[a]P led to, at the doses of 20 and 200 mg/kg/day, significant overexpression of Cyp1a1/Cyp1b1 in 2 out of the 3 brain regions considered, thereby suggesting the ability of the brain to metabolize B[a]P itself. At the same doses, mice exhibited a reduction in anxiety in both the elevated plus maze and the hole board apparatus. Concomitantly, B[a]P triggered dose-dependent changes in Nmda subunit expression (Nr1 and Nr2a/Nr2b) in areas involved in cognition. We detected 9-OH-B[a]P and 7,8-diol-B[a]P in serum at the level for which cognitive impairment was observed. We suggest that these metabolites may, in the future be exploited as potent biomarkers of B[a]P-induced cognitive impairments.

18.
Front Genet ; 12: 657171, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108991

RESUMEN

DNA methylation is one of the most important epigenetic modifications and is closely related with several biological processes such as regulation of gene transcription and the development of non-malignant diseases. The prevailing dogma states that DNA methylation in eukaryotes occurs essentially through 5-methylcytosine (5mC) but recently adenine methylation was also found to be present in eukaryotes. In mouse embryonic stem cells, 6-methyladenine (6mA) was associated with the repression and silencing of genes, particularly in the X-chromosome, known to play an important role in cell fate determination. Here, we have demonstrated that 6mA is a ubiquitous eukaryotic epigenetic modification that is put in place during epigenetically sensitive periods such as embryogenesis and fetal development. In somatic cells there are clear tissue specificity in 6mA levels, with the highest 6mA levels being observed in the brain. In zebrafish, during the first 120 h of embryo development, from a single pluripotent cell to an almost fully formed individual, 6mA levels steadily increase. An identical pattern was observed over embryonic days 7-21 in the mouse. Furthermore, exposure to a neurotoxic environmental pollutant during the same early life period may led to a decrease in the levels of this modification in female rats. The identification of the periods during which 6mA epigenetic marks are put in place increases our understanding of this mammalian epigenetic modification, and raises the possibility that it may be associated with developmental processes.

19.
Toxicol Appl Pharmacol ; 240(1): 37-45, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19573549

RESUMEN

Benzo[a]pyrene (B[a]P) is a small molecular weight carcinogen and the prototype of polycyclic aromatic hydrocarbons (PAHs). While these compounds are primarily known for their carcinogenicity, B[a]P and its metabolites are also toxic for mammalian immune cells. To develop a prophylactic immune strategy against detrimental effects of B[a]P, we have immunized mice with a B[a]P-diphtheria toxoid conjugate vaccine. We showed that high levels of antibodies against B[a]P and its metabolites modulate the redistribution of these PAHs in the blood. After immunization, increased levels of B[a]P and its metabolites were recovered in the blood. B[a]P significantly suppressed the proliferative response of both T and B cells after a sub-acute administration, an effect that was completely reversed by vaccination. In immunized mice also the immunotoxic effect of B[a]P on IFN-gamma, IL-12, TNF-alpha production and the reduced B cell activation was restored. Finally, our results showed that specific antibodies inhibited the induction of Cyp1a1 by B[a]P in lymphocytes and Cyp1b1 in the liver, enzymes that are known to convert the procarcinogen B[a]P to the ultimate DNA-adduct forming metabolite, a major risk factor of chemical carcinogenesis. Thus, we demonstrate that vaccination with a B[a]P conjugate vaccine based on a carrier protein used in licensed human vaccines reduces immunotoxicity and possibly other detrimental effects associated with B[a]P.


Asunto(s)
Benzo(a)pireno/toxicidad , Toxoide Diftérico/inmunología , Toxoide Diftérico/uso terapéutico , Vacunación/métodos , Animales , Anticuerpos/sangre , Anticuerpos/fisiología , Benzo(a)pireno/antagonistas & inhibidores , Benzo(a)pireno/metabolismo , Células Cultivadas , Difteria/inmunología , Difteria/prevención & control , Toxoide Diftérico/administración & dosificación , Femenino , Haptenos/administración & dosificación , Haptenos/inmunología , Haptenos/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Vacunas Conjugadas/administración & dosificación , Vacunas Conjugadas/inmunología , Vacunas Conjugadas/uso terapéutico
20.
Int J Genomics ; 2019: 2085496, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30733955

RESUMEN

The incidence of neurodevelopmental and neurodegenerative diseases worldwide has dramatically increased over the last decades. Although the aetiology remains uncertain, evidence is now growing that exposure to persistent organic pollutants during sensitive neurodevelopmental periods such as early life may be a strong risk factor, predisposing the individual to disease development later in life. Epidemiological studies have associated environmentally persistent organic pollutant exposure to brain disorders including neuropathies, cognitive, motor, and sensory impairments; neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD); and neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). In many ways, this expands the classical "Developmental Origins of Health and Disease" paradigm to include exposure to pollutants. This model has been refined over the years to give the current "three-hit" model that considers the individual's genetic factors as a first "hit." It has an immediate interaction with the early-life exposome (including persistent organic pollutants) that can be considered to be a second "hit." Together, these first two "hits" produce a quiescent or latent phenotype, most probably encoded in the epigenome, which has become susceptible to a third environmental "hit" in later life. It is only after the third "hit" that the increased risk of disease symptoms is crystallised. However, if the individual is exposed to a different environment in later life, they would be expected to remain healthy. In this review, we examine the effect of exposure to persistent organic pollutants and particulate matters in early life and the relationship to subsequent neurodevelopmental and neurodegenerative disorders. The roles of those environmental factors which may affect epigenetic DNA methylation and therefore influence normal neurodevelopment are then evaluated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA