Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 157(5): 1203-15, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24855952

RESUMEN

Period (PER) proteins are essential components of the mammalian circadian clock. They form complexes with cryptochromes (CRY), which negatively regulate CLOCK/BMAL1-dependent transactivation of clock and clock-controlled genes. To define the roles of mammalian CRY/PER complexes in the circadian clock, we have determined the crystal structure of a complex comprising the photolyase homology region of mouse CRY1 (mCRY1) and a C-terminal mouse PER2 (mPER2) fragment. mPER2 winds around the helical mCRY1 domain covering the binding sites of FBXL3 and CLOCK/BMAL1, but not the FAD binding pocket. Our structure revealed an unexpected zinc ion in one interface, which stabilizes mCRY1-mPER2 interactions in vivo. We provide evidence that mCRY1/mPER2 complex formation is modulated by an interplay of zinc binding and mCRY1 disulfide bond formation, which may be influenced by the redox state of the cell. Our studies may allow for the development of circadian and metabolic modulators.


Asunto(s)
Criptocromos/química , Criptocromos/metabolismo , Cristalografía por Rayos X , Proteínas Circadianas Period/química , Proteínas Circadianas Period/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas F-Box/química , Proteínas F-Box/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes , Alineación de Secuencia , Zinc/metabolismo
2.
Cell ; 153(6): 1394-405, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23746849

RESUMEN

Drosophila cryptochrome (dCRY) is a FAD-dependent circadian photoreceptor, whereas mammalian cryptochromes (CRY1/2) are integral clock components that repress mCLOCK/mBMAL1-dependent transcription. We report crystal structures of full-length dCRY, a dCRY loop deletion construct, and the photolyase homology region of mouse CRY1 (mCRY1). Our dCRY structures depict Phe534 of the regulatory tail in the same location as the photolesion in DNA-repairing photolyases and reveal that the sulfur loop and tail residue Cys523 plays key roles in the dCRY photoreaction. Our mCRY1 structure visualizes previously characterized mutations, an NLS, and MAPK and AMPK phosphorylation sites. We show that the FAD and antenna chromophore-binding regions, a predicted coiled-coil helix, the C-terminal lid, and charged surfaces are involved in FAD-independent mPER2 and FBXL3 binding and mCLOCK/mBMAL1 transcriptional repression. The structure of a mammalian cryptochrome1 protein may catalyze the development of CRY chemical probes and the design of therapeutic metabolic modulators.


Asunto(s)
Relojes Circadianos , Criptocromos/química , Proteínas de Drosophila/química , Drosophila/metabolismo , Proteínas del Ojo/química , Secuencia de Aminoácidos , Animales , Ritmo Circadiano , Criptocromos/genética , Criptocromos/metabolismo , Análisis Mutacional de ADN , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transporte de Electrón , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Circadianas Period/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Alineación de Secuencia , Transcripción Genética
3.
Proc Natl Acad Sci U S A ; 109(9): 3311-6, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22331899

RESUMEN

The three PERIOD homologues mPER1, mPER2, and mPER3 constitute central components of the mammalian circadian clock. They contain two PAS (PER-ARNT-SIM) domains (PAS-A and PAS-B), which mediate homo- and heterodimeric mPER-mPER interactions as well as interactions with transcription factors and kinases. Here we present crystal structures of PAS domain fragments of mPER1 and mPER3 and compare them with the previously reported mPER2 structure. The structures reveal homodimers, which are mediated by interactions of the PAS-B ß-sheet surface including a highly conserved tryptophan (Trp448(mPER1), Trp419(mPER2), Trp359(mPER3)). mPER1 homodimers are additionally stabilized by interactions between the PAS-A domains and mPER3 homodimers by an N-terminal region including a predicted helix-loop-helix motive. We have verified the existence of these homodimer interfaces in solution and inside cells using analytical gel filtration and luciferase complementation assays and quantified their contributions to homodimer stability by analytical ultracentrifugation. We also show by fluorescence recovery after photobleaching analyses that destabilization of the PAS-B/tryptophan dimer interface leads to a faster mobility of mPER2 containing complexes in human U2OS cells. Our study reveals structural and quantitative differences between the homodimeric interactions of the three mouse PERIOD homologues, which are likely to contribute to their distinct clock functions.


Asunto(s)
Proteínas Circadianas Period/química , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Cristalografía por Rayos X , Dimerización , Recuperación de Fluorescencia tras Fotoblanqueo , Secuencias Hélice-Asa-Hélice , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Circadianas Period/fisiología , Conformación Proteica , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Soluciones , Triptófano/química
4.
NAR Genom Bioinform ; 4(4): lqac097, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36601580

RESUMEN

The skin is the largest human organ with a circadian clock that regulates its function. Although circadian rhythms in specific functions are known, rhythms in the proximal clock output, gene expression, in human skin have not been thoroughly explored. This work reports 24 h gene expression rhythms in two skin layers, epidermis and dermis, in a cohort of young, healthy adults, who maintained natural, regular sleep-wake schedules. 10% of the expressed genes showed such diurnal rhythms at the population level, of which only a third differed between the two layers. Amplitude and phases of diurnal gene expression varied more across subjects than layers, with amplitude being more variable than phases. Expression amplitudes in the epidermis were larger and more subject-variable, while they were smaller and more consistent in the dermis. Core clock gene expression was similar across layers at the population-level, but were heterogeneous in their variability across subjects. We also identified small sets of biomarkers for internal clock phase in each layer, which consisted of layer-specific non-core clock genes. This work provides a valuable resource to advance our understanding of human skin and presents a novel methodology to quantify sources of variability in human circadian rhythms.

5.
Diabetes ; 70(9): 1985-1999, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34226282

RESUMEN

Adipose tissue (AT) is a key metabolic organ which functions are rhythmically regulated by an endogenous circadian clock. Feeding is a "zeitgeber" aligning the clock in AT with the external time, but mechanisms of this regulation remain largely unclear. We tested the hypothesis that postprandial changes of the hormone insulin directly entrain circadian clocks in AT and investigated a transcriptional-dependent mechanism of this regulation. We analyzed gene expression in subcutaneous AT (SAT) of obese subjects collected before and after the hyperinsulinemic-euglycemic clamp or control saline infusion (SC). The expressions of core clock genes PER2, PER3, and NR1D1 in SAT were differentially changed upon insulin and saline infusion, suggesting insulin-dependent clock regulation. In human stem cell-derived adipocytes, mouse 3T3-L1 cells, and AT explants from mPer2Luc knockin mice, insulin induced a transient increase of the Per2 mRNA and protein expression, leading to the phase shift of circadian oscillations, with similar effects for Per1 Insulin effects were dependent on the region between -64 and -43 in the Per2 promoter but not on CRE and E-box elements. Our results demonstrate that insulin directly regulates circadian clocks in AT and isolated adipocytes, thus representing a primary mechanism of feeding-induced AT clock entrainment.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Relojes Circadianos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Insulina/farmacología , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos
6.
Nat Commun ; 12(1): 3796, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145278

RESUMEN

The cell biology of circadian clocks is still in its infancy. Here, we describe an efficient strategy for generating knock-in reporter cell lines using CRISPR technology that is particularly useful for genes expressed transiently or at low levels, such as those coding for circadian clock proteins. We generated single and double knock-in cells with endogenously expressed PER2 and CRY1 fused to fluorescent proteins allowing us to simultaneously monitor the dynamics of CRY1 and PER2 proteins in live single cells. Both proteins are highly rhythmic in the nucleus of human cells with PER2 showing a much higher amplitude than CRY1. Surprisingly, CRY1 protein is nuclear at all circadian times indicating the absence of circadian gating of nuclear import. Furthermore, in the nucleus of individual cells CRY1 abundance rhythms are phase-delayed (~5 hours), and CRY1 levels are much higher (>5 times) compared to PER2 questioning the current model of the circadian oscillator.


Asunto(s)
Proteínas CLOCK/metabolismo , Relojes Circadianos/fisiología , Criptocromos/metabolismo , Proteínas Circadianas Period/metabolismo , Análisis de la Célula Individual/métodos , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Ritmo Circadiano/fisiología , Criptocromos/genética , Técnicas de Sustitución del Gen/métodos , Genes Reporteros/genética , Células HCT116 , Humanos , Proteínas Circadianas Period/genética
7.
Sci Rep ; 7(1): 17742, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29255161

RESUMEN

Antarctic krill (Euphausia superba) is a key species in Southern Ocean ecosystem where it plays a central role in the Antarctic food web. Available information supports the existence of an endogenous timing system in krill enabling it to synchronize metabolism and behavior with an environment characterized by extreme seasonal changes in terms of day length, food availability, and surface ice extent. A screening of our transcriptome database "KrillDB" allowed us to identify the putative orthologues of 20 circadian clock components. Mapping of conserved domains and phylogenetic analyses strongly supported annotations of the identified sequences. Luciferase assays and co-immunoprecipitation experiments allowed us to define the role of the main clock components. Our findings provide an overall picture of the molecular mechanisms underlying the functioning of the endogenous circadian clock in the Antarctic krill and shed light on their evolution throughout crustaceans speciation. Interestingly, the core clock machinery shows both mammalian and insect features that presumably contribute to an evolutionary strategy to cope with polar environment's challenges. Moreover, despite the extreme variability characterizing the Antarctic seasonal day length, the conserved light mediated degradation of the photoreceptor EsCRY1 suggests a persisting pivotal role of light as a Zeitgeber.


Asunto(s)
Relojes Circadianos/fisiología , Euphausiacea/metabolismo , Euphausiacea/fisiología , Animales , Regiones Antárticas , Relojes Circadianos/genética , Ecosistema , Filogenia , Estaciones del Año , Transcriptoma
8.
J Biol Rhythms ; 30(5): 389-95, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26243628

RESUMEN

Targeted genome editing using CRISPR/Cas9 is a relatively new, revolutionary technology allowing for efficient and directed alterations of the genome. It has been widely used for loss-of-function studies in animals and cell lines but has not yet been used to study circadian rhythms. Here, we describe the application of CRISPR/Cas9 genome editing for the generation of an F-box and leucine-rich repeat protein 3 (Fbxl3) knockout in a human cell line. Genomic alterations at the Fbxl3 locus occurred with very high efficiency (70%-100%) and specificity at both alleles, resulting in insertions and deletions that led to premature stop codons and hence FBXL3 knockout. Fbxl3 knockout cells displayed low amplitude and long period oscillations of Bmal1-luciferase reporter activity as well as increased CRY1 protein stability in line with previously published phenotypes for Fbxl3 knockout in mice. Thus, CRISPR/Cas9 genome editing should be highly valuable for studying circadian rhythms not only in human cells but also in classic model systems as well as nonmodel organisms.


Asunto(s)
Sistemas CRISPR-Cas/genética , Relojes Circadianos/genética , Proteínas F-Box/genética , Técnicas de Inactivación de Genes/métodos , Genoma Humano/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Secuencia de Bases , Western Blotting , Línea Celular Tumoral , Relojes Circadianos/fisiología , Criptocromos/genética , Criptocromos/metabolismo , Proteínas F-Box/metabolismo , Células HEK293 , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Modelos Genéticos , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA