Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
RSC Chem Biol ; 5(7): 640-651, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38966672

RESUMEN

The post-translational modification (PTM) ADP-ribosylation plays an important role in cell signalling and regulating protein function and has been implicated in the development of multiple diseases, including breast and ovarian cancers. Studying the underlying mechanisms through which this PTM contributes towards disease development, however, has been hampered by the lack of appropriate tools for reliable identification of physiologically relevant ADP-ribosylated proteins in a live-cell environment. Herein, we explore the application of an alkyne-tagged proprobe, 6Yn-ProTide-Ad (6Yn-Pro) as a chemical tool for the identification of intracellular ADP-ribosylated proteins through metabolic labelling. We applied targeted metabolomics and chemical proteomics in HEK293T cells treated with 6Yn-Pro to demonstrate intracellular metabolic conversion of the probe into ADP-ribosylation cofactor 6Yn-NAD+, and subsequent labelling and enrichment of PARP1 and multiple known ADP-ribosylated proteins in cells under hydrogen peroxide-induced stress. We anticipate that the approach and methodology described here will be useful for future identification of novel intracellular ADP-ribosylated proteins.

2.
Cell Rep ; 42(10): 113307, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37858464

RESUMEN

Ovarian high-grade serous carcinoma (HGSC) is the most common subtype of ovarian cancer with limited therapeutic options and a poor prognosis. In recent years, poly-ADP ribose polymerase (PARP) inhibitors have demonstrated significant clinical benefits, especially in patients with BRCA1/2 mutations. However, acquired drug resistance and relapse is a major challenge. Indisulam (E7070) has been identified as a molecular glue that brings together splicing factor RBM39 and DCAF15 E3 ubiquitin ligase resulting in polyubiquitination, degradation, and subsequent RNA splicing defects. In this work, we demonstrate that the loss of RBM39 induces splicing defects in key DNA damage repair genes in ovarian cancer, leading to increased sensitivity to cisplatin and various PARP inhibitors. The addition of indisulam also improved olaparib response in mice bearing PARP inhibitor-resistant tumors. These findings demonstrate that combining RBM39 degraders and PARP inhibitors is a promising therapeutic approach to improve PARP inhibitor response in ovarian HGSC.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Femenino , Humanos , Animales , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proteína BRCA1/genética , Mutación , Factores de Empalme de ARN/genética , ARN , Proteína BRCA2/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Empalme del ARN , Ftalazinas/farmacología , Ftalazinas/uso terapéutico
3.
Nat Commun ; 13(1): 1380, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296644

RESUMEN

Neuroblastoma is the most common paediatric solid tumour and prognosis remains poor for high-risk cases despite the use of multimodal treatment. Analysis of public drug sensitivity data showed neuroblastoma lines to be sensitive to indisulam, a molecular glue that selectively targets RNA splicing factor RBM39 for proteosomal degradation via DCAF15-E3-ubiquitin ligase. In neuroblastoma models, indisulam induces rapid loss of RBM39, accumulation of splicing errors and growth inhibition in a DCAF15-dependent manner. Integrative analysis of RNAseq and proteomics data highlight a distinct disruption to cell cycle and metabolism. Metabolic profiling demonstrates metabolome perturbations and mitochondrial dysfunction resulting from indisulam. Complete tumour regression without relapse was observed in both xenograft and the Th-MYCN transgenic model of neuroblastoma after indisulam treatment, with RBM39 loss, RNA splicing and metabolic changes confirmed in vivo. Our data show that dual-targeting of metabolism and RNA splicing with anticancer indisulam is a promising therapeutic approach for high-risk neuroblastoma.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Neuroblastoma , Línea Celular Tumoral , Niño , Humanos , Proteína Proto-Oncogénica N-Myc , Recurrencia Local de Neoplasia , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Empalme del ARN/genética , Sulfonamidas
4.
Biology (Basel) ; 9(2)2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32098331

RESUMEN

Metastasis is associated with poor prognosis in breast cancer. Although some studies suggest beta-blockers increase survival by delaying metastasis, others have been discordant. This study provides both insights into the anomalous findings and identifies potential biomarkers that may be treatment targets. Cell line models of basal-type and oestrogen receptor-positive breast cancer were profiled for basal levels of adrenoceptor gene/protein expression, and ß2-adrenoceptor mediated cell behaviour including migration, invasion, adhesion, and survival in response to adrenoceptor agonist/antagonist treatment. Protein profiling and histology identified biomarkers and drug targets. Baseline levels of adrenoceptor gene expression are higher in basal-type rather than oestrogen receptor-positive cancer cells. Norepinephrine (NE) treatment increased invasive capacity in all cell lines but did not increase proliferation/survival. Protein profiling revealed the upregulation of the pro-metastatic gene Ly6/PLAUR Domain-Containing Protein 3 (LYPD3) in norepinephrine-treated MDA-MB-468 cells. Histology confirmed selective LYPD3 expression in primary and metastatic breast tumour samples. These findings demonstrate that basal-type cancer cells show a more aggressive adrenoceptor-ß2-activated phenotype in the resting and stimulated state, which is attenuated by adrenoceptor-ß2 inhibition. This study also highlights the first association between ADRß2 signalling and LYPD3; its knockdown significantly reduced the basal and norepinephrine-induced activity of MCF-7 cells in vitro. The regulation of ADRß2 signalling by LYPD3 and its metastasis promoting activities, reveal LYPD3 as a promising therapeutic target in the treatment of breast and other cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA