Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
BMC Plant Biol ; 20(1): 84, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32085729

RESUMEN

BACKGROUND: Membrane lipid composition associates closely with membrane stability and fluidity under water stress. In this study, lipidomic analyses based on electrospray ionization mass spectrometry (ESI-MS/MS) were carried out to explore dynamic changes of membrane lipids in term of molecular species caused by PEG (Polyethylene glycol-6000)-induced water stress in wheat seedlings. RESULTS: Among the main phospholipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) are primary degradation targets, and PC was degraded in the largest degree. Membrane ion leakage dramatically increased later than the significant reduction of these phospholipids, indicating that the loss of membrane integrity lagged behind severe phospholipid degradation. Monogalactosyldiacylglycerol (MGDG) increased firstly and decreased later, while digalactosyldiacylglycerol (DGDG) ratcheted up with stress. DGDG/MGDG increased after stress for 3 days, and unsaturation of DGDG was promoted with stress. Variation trends of galactolipids differed among molecular species. The time when MGDG (34:3), DGDG (34:3) began to decline approached to the time when non-stomatal limitation impaired photosynthesis. While the two predominant molecular species MGDG (36:6) and DGDG (36:6) began to decline later. So we speculated that MGDG (34:3), DGDG (34:3) might be key components in photosynthesis apparatus and participate in photosynthesis directly. While the two predominant molecular species, MGDG (36:6) and DGDG (36:6) might locate in thylakoid lipid bilayer matrix and play roles in stabilizing the membrane. The research provides new insights into the dynamic response of lipid metabolism to PEG-induced water stress. CONCLUSION: In wheat plants under water stress, the major molecular species of PC, PE and PG were degraded, MGDG and DGDG molecular species had differing degradation time courses.


Asunto(s)
Sequías , Lípidos de la Membrana/metabolismo , Hojas de la Planta/metabolismo , Triticum/fisiología , Polietilenglicoles/efectos adversos , Plantones/metabolismo , Estrés Fisiológico/genética
2.
Int J Mol Sci ; 20(11)2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141975

RESUMEN

Drought is an important abiotic stress that seriously restricts crop productivity. An understanding of drought tolerance mechanisms offers guidance for cultivar improvement. In order to understand how a well-known wheat genotype Jinmai 47 responds to drought, we adopted the iTRAQ and LC/MS approaches and conducted proteomics analysis of leaves after exposure to 20% of polyethylene glycol-6000 (PEG)-induced stress for 4 days. The study identified 176 differentially expressed proteins (DEPs), with 65 (36.5%) of them being up-regulated, and 111 (63.5%) down-regulated. DEPs, located in cellular membranes and cytosol mainly, were involved in stress and redox regulation (51), carbohydrate and energy metabolism (36), amino acid metabolism (24), and biosynthesis of other secondary metabolites (20) primarily. Under drought stress, TCA cycle related proteins were up-regulated. Antioxidant system, signaling system, and nucleic acid metabolism etc. were relatively weakened. In comparison, the metabolism pathways that function in plasma dehydration protection and protein structure protection were strongly enhanced, as indicated by the improved biosynthesis of 2 osmolytes, sucrose and Proline, and strongly up-regulated protective proteins, LEA proteins and chaperones. SUS4, P5CSs, OAT, Rab protein, and Lea14-A were considered to be important candidate proteins, which deserve to be further investigated.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Presión Osmótica , Proteínas de Plantas/genética , Proteoma/genética , Triticum/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Triticum/fisiología
3.
BMC Plant Biol ; 17(1): 41, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28187710

RESUMEN

BACKGROUND: Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO3, Na2SO4, and Na2CO3. RESULTS: We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. CONCLUSIONS: These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.


Asunto(s)
Plantones/metabolismo , Estrés Fisiológico/fisiología , Zea mays/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Metaboloma/fisiología , Metales/metabolismo , Análisis Multivariante , Presión Osmótica , Fotosíntesis/efectos de los fármacos , Salinidad , Tolerancia a la Sal , Plantones/efectos de los fármacos , Plantones/fisiología , Cloruro de Sodio/farmacología , Sulfatos/farmacología , Zea mays/efectos de los fármacos , Zea mays/fisiología
4.
PeerJ ; 12: e17618, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948218

RESUMEN

Leaf inclination angle (LIA) and tillering impact the winter wheat (Triticum aestivum L.) population canopy structure. Understanding their effects on water use (WU) parameters and yield can guide water-saving strategies through population control. In this study, six near-isogenic lines (NILs) and their parents were selected as materials. These special materials were characterized by varying tillering at the current sowing density, a similar genetic background, and, particularly, a gradient in mean flag leaf LIA. The investigation focused on the jointing to early grain-filling stage, the peak water requirement period of wheat crops. Population-scale transpiration (PT) and evaporation from the soil surface (E) were partitioned from total evapotranspiration (ET) by the means of micro-lysimeters. The results showed decreased PT, E, and ET with increased population density (PD) within a narrow density range derived from varying tillering across genotypes. Significant correlations existed between PD and ET, E, and PT, especially in the wettest 2017-2018 growing season. Within such narrow PD range, all the correlations between WU parameters and PD were negative, although some correlations were not statistically significant, thereby suggesting the population structure's predominant impact. No significant correlation existed between LIA and both ET and PT within the LIA range of 35°-65°. However, significant correlations occurred between LIA and E in two growing seasons. Genotypes with similar LIA but different PD produced varied ET; while with similar PD, the four pairs of genotypes with different LIA each consumed similar ET, thus highlighting PD's more crucial role in regulating ET. The yield increased with higher LIA, and showed a significant correlation, emphasizing the LIA's significant effect on yield. However, no correlation was observed with PD, indicating the minor effect of tillering at the current sowing density. Therefore these results might offer valuable insights for breeding water-saving cultivars and optimizing population structures for effective field water conservation.


Asunto(s)
Hojas de la Planta , Transpiración de Plantas , Suelo , Triticum , Triticum/genética , Triticum/fisiología , Triticum/crecimiento & desarrollo , Hojas de la Planta/fisiología , Suelo/química , Estaciones del Año , Agua/metabolismo , Genotipo
5.
Sci Total Environ ; 857(Pt 1): 159390, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36243072

RESUMEN

Annual gross primary productivity (AGPP) is the basis for grain production and terrestrial carbon sequestration. Mapping regional AGPP from site measurements provides methodological support for analysing AGPP spatiotemporal variations thereby ensures regional food security and mitigates climate change. Based on 641 site-year eddy covariance measuring AGPP from China, we built an AGPP mapping scheme based on its formation and selected the optimal mapping way, which was conducted through analysing the predicting performances of divergent mapping tools, variable combinations, and mapping approaches in predicting observed AGPP variations. The reasonability of the selected optimal scheme was confirmed by assessing the consistency between its generating AGPP and previous products in spatiotemporal variations and total amount. Random forest regression tree explained 85 % of observed AGPP variations, outperforming other machine learning algorithms and classical statistical methods. Variable combinations containing climate, soil, and biological factors showed superior performance to other variable combinations. Mapping AGPP through predicting AGPP per leaf area (PAGPP) explained 86 % of AGPP variations, which was superior to other approaches. The optimal scheme was thus using a random forest regression tree, combining climate, soil, and biological variables, and predicting PAGPP. The optimal scheme generating AGPP of Chinese terrestrial ecosystems decreased from southeast to northwest, which was highly consistent with previous products. The interannual trend and interannual variation of our generating AGPP showed a decreasing trend from east to west and from southeast to northwest, respectively, which was consistent with data-oriented products. The mean total amount of generated AGPP was 7.03 ± 0.45 PgC yr-1 falling into the range of previous works. Considering the consistency between the generated AGPP and previous products, our optimal mapping way was suitable for mapping AGPP from site measurements. Our results provided a methodological support for mapping regional AGPP and other fluxes.


Asunto(s)
Cambio Climático , Ecosistema , Secuestro de Carbono , Suelo , Aprendizaje Automático , Carbono , Dióxido de Carbono/análisis
6.
Front Plant Sci ; 13: 1035038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531356

RESUMEN

To clarify the differences in growth and yield responses to drought stress among genotypes contrasting in environmental background, dryland and irrigated genotypes, as well as the underlying biochemical mechanism would provide valuable information for developing superior dryland cultivars. Pot experiments for the whole life cycle in fifteen genotypes and comparative metabolomics analysis for seedlings between two drought tolerant (DT) dryland genotypes and two drought sensitive (DS) irrigated ones were carried out. The DT dryland genotypes suffered heavy biomass loss during severer drought but showed minor yield loss ultimately, while the DS irrigated ones showed minor biomass loss but greater yield loss. Additionally, the superior DT dryland genotypes showed better yield performance under both drought stress and well-watered conditions, indicating their possessing both drought tolerance and high yield potential traits. Suffering severer drought stress, seedling leaves of the DS irrigated genotypes increased some amino acids and organic acids to maintain cell metabolism and accumulate more biomass. Proline in particular was overproduced, which might cause toxicity to cell systems and lead to enormous yield loss ultimately. In contrast, DT dryland genotypes increased the beneficial amino acid and phenolic acids to enhance cell self-protection for alleviating drought damage and efficiently minimized yield loss ultimately.

7.
Ying Yong Sheng Tai Xue Bao ; 32(3): 799-809, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33754544

RESUMEN

Forests play an important role in regulating climate change and maintaining carbon balance. To explore the carbon storage and carbon sequestration rate of national forest parks is of great significance for carbon sequestration capacity assessment and sustainable forest management. A process-based ecosystem model (CEVSA2 model) was used to simulate the spatial distribution of carbon density, carbon storage and carbon sequestration rate of 881 national forest parks in China during 1982-2017. The results showed that the average carbon density of national forest parks was 255.18 t C·hm-2, being higher than the average carbon density of forest ecosystem in China. In 2017, the total carbon storage of national forest parks increased to 3.56 Pg C, accounting for 11.0%-12.2% of the total carbon storage in national forest ecosystems. During 1982-2017, the average carbon sequestration rate of national forest parks reached 0.45 t C·hm-2·a-1, and the carbon sequestration rate of all national forest parks was above 0.30 t C·hm-2·a-1. National forest parks in the northeast and southwest of China had the highest total carbon storage. The national forest parks in northeast of China had the highest soil organic carbon sequestration rate, while those in eastern China and central southern China had the highest biomass carbon sequestration rate. The area of national forest parks accounted for 5.8% of the total forest area of China, playing an important role in forest carbon sink management of China. Accurate assessment of the growth status, carbon sequestration potential and carbon absorption characteristics of national forest parks could provide reference for the comprehensive assessment of ecosystem service of forest parks in China.


Asunto(s)
Secuestro de Carbono , Carbono , Biomasa , Carbono/análisis , China , Ecosistema , Bosques , Suelo , Árboles
8.
Ecol Evol ; 11(12): 7211-7225, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34188807

RESUMEN

Predicting the change in carbon storage in regions of high carbon uptake and those under highly intensive human disturbance is crucial for regional ecosystem management to promote sustainable development of the economy and ecology in the future. We use a process-based model to estimate the terrestrial carbon storage in Yangtze River Economic Belt (YREB) and to predict the change of carbon storage over the next 100 years. The results show that the vegetation carbon (VC) and soil organic carbon (SOC) storage were 8.97 and 28.85 Pg C in the YREB from 1981 to 2005, respectively. The highest VC density is distributed in the southern region of the YREB, and the highest SOC density distributes in subalpine and alpine area of the western region of the YREB. Carbon storage in the YREB continued to increase from 1981 to 2005 and in future projections, under both the representative concentration pathway 4.5 (RCP4.5) and the RCP8.5 scenarios. The increased rate of carbon storage in the YREB under the RCP8.5 scenario is higher than that under the RCP4.5 scenario. Under the RCP4.5 scenario, the increasing trend of VC storage tends to be reduced after the 2060s; conversely, the increase of both VC and SOC is accelerated after the 2050s under the RCP8.5 scenario. The SOC density in Western Sichuan will decrease in the future, especially under the RCP8.5 scenario. Western Sichuan has the highest SOC density in the YREB; therefore, it is important to manage the ecosystems there in order to cope with significant warming. The positive impact of warming and the CO2 fertilization effect on vegetation growth and carbon uptake will be predominantly attributed to the increase of terrestrial carbon storage in the YREB. However, warming will stimulate the decomposition of soil organic carbon, contributing directly to reducing SOC storage in high-altitude regions (e.g., alpine and subalpine regions of Western Sichuan).

9.
PeerJ ; 8: e8927, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391197

RESUMEN

A good understanding of the response of photosynthesis rate (P N) and transpiration rate (Tr) to stomatal alteration during the diurnal variations is important to cumulative photosynthetic production and water loss of crops. Six wheat genotypes were studied for 2 years with pot cultivation in rain-shelter. Among different genotypes, stomatal conductance (g s) was significantly correlated with both P N and Tr. But for each genotype, though g s was significantly correlated with P N regardless of relative air humidity (RH) status and it was also significantly correlated with Tr under lower RH (LRH, 15.4%) and moderate RH (MRH, 28.3%), it was not correlated with Tr under higher RH (HRH, 36.7%) during the diurnal changes. The conditional correlation between g s and Tr of wheat evoked new thinking on the relationships among g s, P N and Tr. Path analysis was further carried out to clarify the correlations of g s with the four atmospheric factors, that of Tr with g s and the four factors and the direct and indirect effects of the factors, during their diurnal dynamic variation. The effects of these factors on g s or Tr were related to RH. All the four factors had a much higher correlation with g s under HRH than that under LRH and MRH. Air temperature (T) had a rather higher direct effect than RH and photosynthetically active radiation (PAR). Also, the other factors had a much higher indirect effect on g s through vapor pressure deficit (VPD) and T. Transpiration rate was highly correlated with g s under LRH and MRH, with g s having a higher direct effect on it. In comparison, Tr was not correlated with g s under HRH but highly correlated with the atmospheric factors, with T, RH, and PAR having a higher indirect effect through VPD.

10.
Ecol Evol ; 9(15): 8664-8675, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31410270

RESUMEN

Changes in vegetation phenology directly reflect the response of vegetation growth to climate change. In this study, using the Normalized Difference Vegetation Index dataset from 1982 to 2015, we extracted start date of vegetation growing season (SOS), end date of vegetation growing season (EOS), and length of vegetation growing season (LOS) in the middle and eastern Eurasia region and evaluated linear trends in SOS, EOS, and LOS for the entire study area, as well as for four climatic zones. The results show that the LOS has significantly increased by 0.27 days/year, mostly due to a significantly advanced SOS (-0.20 days/year) and a slightly delayed EOS (0.07 days/year) over the entire study area from 1982 to 2015. The vegetation phenology trends in the four climatic zones are not continuous throughout the 34-year period. Furthermore, discrepancies in the shifting patterns of vegetation phenology trend existed among different climatic zones. Turning points (TP) of SOS trends in the Cold zone, Temperate zone, and Tibetan Plateau zone occurred in the mid- or late 1990s. The advanced trends of SOS in the Cold zone, Temperate zone, and Tibetan Plateau zone exhibited accelerated, stalled, and reversed patterns after the corresponding TP, respectively. The TP did not occurred in Cold-Temperate zone, where the SOS showed a consistent and continuous advance. TPs of EOS trends in the Cold zone, Cold-Temperate zone, Temperate zone, and Tibetan Plateau zone occurred in the late 1980s or mid-1990s. The EOS in the Cold zone, Cold-Temperate zone, Temperate zone, and Tibetan Plateau zone showed weak advanced or delayed trends after the corresponding TP, which were comparable with the delayed trends before the corresponding TP. The shift patterns of LOS trends were primarily influenced by the shift patterns of SOS trends and were also heterogeneous within climatic zones.

11.
Sci Total Environ ; 655: 641-651, 2019 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-30476845

RESUMEN

Sea surface temperatures (SSTs) strongly influence atmospheric circulation and the Earth's climate, which in turn significantly affects vegetation productivity. Most of the previous studies on the subject have focused on links between the El Niño-Southern Oscillation (ENSO) and vegetation productivity, but few studies have addressed the effects of West Pacific Warm Pool (WPWP) on that although the early stages of the ENSO phenomenon may first develop there. In this paper, we use the mean SST values in the WPWP to construct a climate index, known as the WPWP index (WPI), and study the impacts of the WPWP on global vegetation productivity. We provide evidence for a robust link among the alternating warm and cool WPI pattern, terrestrial vegetation productivity and carbon balance. The analysis is based on both satellite observations and model simulations. The results of this study show that the warm and cool WPWP phases have inverse effects on land surface temperature and precipitation. A warm (cool) WPWP is associated with a warmer (cooler) climate on global land surfaces as well as a drier (wetter) climate in southern hemisphere, and hence enhances (suppresses) vegetation productivity in the latitudes of approximately 10-70°N and suppresses (enhances) vegetation growth in the latitudes of approximately 10-30°S. The underlying mechanism is also discussed. The WPI serves as a meaningful climate index for studying the ocean-vegetation teleconnections.


Asunto(s)
Cambio Climático , Monitoreo del Ambiente , Plantas/metabolismo , Agua de Mar , Temperatura , Atmósfera , Modelos Teóricos , Océano Pacífico , Desarrollo de la Planta
12.
AoB Plants ; 11(6): plz073, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32010438

RESUMEN

Leymus chinensis grassland in Northeast China provides a natural laboratory for the investigation of climate change. The response of L. chinensis to experimental warming can provide insight into its regeneration behaviour and the likely composition of future communities under warmer climate. We used MSR-2420 infrared radiators to elevate temperature and examined soil organic carbon and nitrogen and soil total phosphorus and determined the growth and physiology of L. chinensis in response to manipulations of ambient condition and warming. Results showed that compared with the control, L. chinensis subjected to warming treatment showed increased soil organic carbon and soil total nitrogen, but no significant difference was observed in soil total phosphorus. Climate warming increased shoot biomass, ecosystem respiration, and ecosystem water-use efficiency and reduced net ecosystem CO2 exchange and evapotranspiration. This result implies that warming could rapidly alter carbon fluxes. The effect of warming treatment significantly increased the contents of glucose and fructose and significantly inhibited sucrose synthesis. However, the TCA cycle was enhanced when citric and malic acid contents further accumulated. The results implied that L. chinensis probably enhanced its warming adaption mechanism mainly through increasing glycolysis consumption when it was exposed to elevated temperature. These results provide an understanding of the fundamental evidence explaining the primary metabolism of L. chinensis in response to warming and suggest the future impact of the terrestrial carbon-cycle feedback on global climate change.

13.
Plant Physiol Biochem ; 139: 651-659, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31048122

RESUMEN

Phragmites communis has a long history in Songnen grassland of China and has a series of biological, ecological as well as genetic characteristics contributing to its adaptation to the specific local climatic and edaphic conditions. The aim of the present study was to investigate the ions balance and their relationship to metabolites in P. communis under three salinity stress conditions. Results showed that the contents of Na+, Cl-, and SO42- significantly increased in P. communis leaves, while K+, Mg2+, and Mn2+ decreased. Moreover, Na+ and Cl- had significant negative correlations with metabolites involved in the tricarboxylic acid cycle (TCA cycle), and significant positive correlations with glycolysis. The metabolite results showed that high contents of sugars and proline played important roles in developing salinity tolerance, indicating that glycolysis and proline biosynthesis were enhanced; however, this consumes large amounts of energy and likely caused the TCA cycle to be inhibited. The results suggested that P. communis might enhance its salinity tolerance mainly through increased glycolysis and energy consumption. In addition, restricting Na+ accumulation and increasing of Cl-, and rearrangement of metabolite production in P. communis tissues are possible causes of salinity tolerance. Therefore, salinity caused systems alterations in widespread metabolic networks involving TCA cycle, glycolysis and proline biosynthesis. These findings provided new insights for the P. communis metabolic adaptation to salinity and demonstrated the ions balance and metabolites in P. communis are possibly attributable to development of salinity tolerance.


Asunto(s)
Iones/metabolismo , Poaceae/metabolismo , Glucólisis , Metabolómica , Salinidad
14.
Plant Physiol Biochem ; 141: 370-379, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31212241

RESUMEN

Proteins will provide a new perspective and deeper understanding for the research of crop alkali tolerance. The aims of this study were to determine and identify the differentially abundant proteins and adaptive mechanisms to alkali tolerance between young and old leaves of cotton. The 4704 proteins were identified, in which 1490 were significantly changed in young leaves and 563 were changed in old leaves in response to alkali stress. The differentially abundant proteins were classified into 10 functional categories in the young leaves, and only 3 functional categories were involved in the old leaves. In the photoreaction system, the accumulations of differential proteins, especially Psb proteins, were higher in young leaves than in old leaves. Compared with old leaves, the carbon metabolism was enhanced significantly through an increased chlorophyll content and increased expression of key proteins for carbon metabolism in young leaves. Furthermore, alkali stress revealed more complex effects on the nitrogen metabolism in young leaves than that in old leaves. Our results demonstrated that during adaptation of cotton to alkali stress, young and old leaves have distinct mechanisms of molecular metabolism regulation. The metabolic flexibility was more remarkable in young leaves than in old leaves; therefore, the alkali tolerance of young leaves is more efficient. These data will increase our understanding of alkali-tolerant mechanisms in higher plants.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Gossypium/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Adaptación Fisiológica , Álcalis/metabolismo , Apoptosis , Clorofila/química , Regulación hacia Abajo , Concentración de Iones de Hidrógeno , Nitrógeno/metabolismo , Péptidos/química , Sales (Química)/química , Tripsina/química
15.
Natl Sci Rev ; 6(3): 505-514, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-34691899

RESUMEN

The carbon budgets in terrestrial ecosystems in China are strongly coupled with climate changes. Over the past decade, China has experienced dramatic climate changes characterized by enhanced summer monsoon and decelerated warming. However, the changes in the trends of terrestrial net ecosystem production (NEP) in China under climate changes are not well documented. Here, we used three ecosystem models to simulate the spatiotemporal variations in China's NEP during 1982-2010 and quantify the contribution of the strengthened summer monsoon and warming hiatus to the NEP variations in four distinct climatic regions of the country. Our results revealed a decadal-scale shift in NEP from a downtrend of -5.95 Tg C/yr2 (reduced sink) during 1982-2000 to an uptrend of 14.22 Tg C/yr2 (enhanced sink) during 2000-10. This shift was essentially induced by the strengthened summer monsoon, which stimulated carbon uptake, and the warming hiatus, which lessened the decrease in the NEP trend. Compared to the contribution of 56.3% by the climate effect, atmospheric CO2 concentration and nitrogen deposition had relatively small contributions (8.6 and 11.3%, respectively) to the shift. In conclusion, within the context of the global-warming hiatus, the strengthening of the summer monsoon is a critical climate factor that enhances carbon uptake in China due to the asymmetric response of photosynthesis and respiration. Our study not only revealed the shift in ecosystem carbon sequestration in China in recent decades, but also provides some insight for understanding ecosystem carbon dynamics in other monsoonal areas.

16.
AoB Plants ; 10(2): ply016, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29623182

RESUMEN

An in-depth understanding of the effects of drought stress on plant metabolism is necessary to improve the drought tolerance of wheat and to utilize genetic resources for the development of drought stress-tolerant wheat varieties. In this study, the profiles of 58 key metabolites produced by wheat seedlings in response to drought stress were investigated to determine various physiological processes related to drought tolerance between drought-tolerant and drought-sensitive wheat genotypes. Results showed that the wheat metabolome was dominated by sugars, organic acids and amino acids; the wheat metabolome played important roles to enhance the drought tolerance of shoots. Under drought stress, JD17 exhibited higher growth indices and higher photosynthesis ability than JD8. A high level of compatible solutes and energy in shoots were essential for wheat to develop drought tolerance. Drought also caused system alterations in widespread metabolic networks involving transamination, tricarboxylic acid cycle, glycolysis, glutamate-mediated proline biosynthesis, shikimate-mediated secondary metabolisms and γ-aminobutyric acid metabolisms. Long-term drought stress resulted in the drought-tolerant wheat genotype JD17, which induced metabolic shifts in the tricarboxylic acid cycle and glycolysis with the depletion of the γ-aminobutyric acid shut process. In JD17, the prolonged drought stress induced a progressive accumulation of osmolytes, including proline, sucrose, fructose, mannose and malic acid. This research extended our understanding of the mechanisms involved in wheat seedling drought tolerance; this study also demonstrated that gas chromatography-mass spectrometry metabolomics could be an effective approach to understand the drought effects on plant biochemistry.

17.
Plant Physiol Biochem ; 128: 99-105, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29772493

RESUMEN

Common reed (Phragmites communis) is widely distributed as the dominant plant species in the Songnen Plain of China. The aim of this study was to investigate different physiological adaptive mechanisms to salinity tolerance between young and old leaves. The profiles of 68 metabolites were measured and studied in reed leaves by gas chromatography-mass spectrometer. The nitrogen, carbon, and pigment contents showed stronger growth inhibition for older leaves with salinity stress. In young leaves, high K+ contents not only promoted cell growth, but also prevented influx of superfluous Na+ ions in cells; the Ca2+ accumulation in old leaves implied that Ca2+ triggered the SOS-Na+ exclusion system and reduced Na+ toxicity. Thus, the mechanism of enhanced tolerance differed between young and old leaves. The metabolite results indicated that the young and old leaves had different mechanisms of osmotic regulation; sugars/polyols and amino acids played important roles in developing salinity tolerance in young leaves but high contents of fatty acids were important for old leaves. These results implied dramatically enhanced sugars and amino acid synthesis but inhibited energy metabolism in young leaves. In contrast, fatty acid synthesis was enhanced in old leaves. The results extended our understanding of the differences in physiological metabolism in adaptive to the salt-alkalization of soil in Songnen grassland between young and old leaves of reeds.


Asunto(s)
Adaptación Fisiológica , Pradera , Presión Osmótica/fisiología , Hojas de la Planta/metabolismo , Poaceae/fisiología , Salinidad , Estrés Fisiológico
18.
Ecol Evol ; 7(17): 6736-6746, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28904755

RESUMEN

The response of ecosystems to different magnitudes of climate warming and corresponding precipitation changes during the last few decades may provide an important reference for predicting the magnitude and trajectory of net primary productivity (NPP) in the future. In this study, a process-based ecosystem model, Carbon Exchange between Vegetation, Soil and Atmosphere (CEVSA), was used to investigate the response of NPP to warming at both national and subregional scales during 1961-2010. The results suggest that a 1.3°C increase in temperature stimulated the positive changing trend in NPP at national scale during the past 50 years. Regardless of the magnitude of temperature increase, warming enhanced the increase in NPP; however, the positive trend of NPP decreased when warming exceeded 2°C. The largest increase in NPP was found in regions where temperature increased by 1-2°C, and this rate of increase also contributed the most to the total increase in NPP in China's terrestrial ecosystems. Decreasing precipitation depressed the positive trend in NPP that was stimulated by warming. In northern China, warming depressed the increasing trend of NPP and warming that was accompanied by decreasing precipitation led to negative changing trends in NPP in large parts of northern China, especially when warming exceeded 2°C. However, warming stimulated the increase in NPP until warming was greater than 2°C, and decreased precipitation helped to increase the NPP in southern China.

19.
Sci Rep ; 7(1): 17614, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29242569

RESUMEN

We estimated ecosystem respiration (Re) and its components in a rainfed spring maize field in the Loess Plateau, China, during the growing seasons of 2012, 2013, and 2014 using measurements of eddy covariance and soil respiration (Rs). The multi-factor equation, which included photosynthetic active radiation, 5-cm soil temperature, 10-cm soil water content, and green leaf area index (GLAI), had goodness-of-fit values of between 0.81 and 0.94 for Re, autotrophic respiration (Ra), and above-ground autotrophic respiration (Raa), and goodness-of-fit values of between 0.50 and 0.67 for Rs, below-ground autotrophic respiration (Rab), and heterotrophic respiration (Rh). The highly significant linear correlations between gross primary production (GPP) and Re and its components indicate that GPP had a strong influence on Re and its components. The growing season Re was dominated by Ra (64-71%), which in turn was dominated by Raa (63-73%). Although Rs was mainly made up of Rh (56-61%), Rs resembled Rab more closely than Rh. The relationships between GLAI and Ra/Re and between GLAI and Rab/Rs were described by logarithmic equations with goodness-of-fit values of between 0.88 and 0.89 and between 0.77 and 0.84, respectively, indicating that GLAI controlled Ra/Re and Rab/Rs.


Asunto(s)
Respiración de la Célula/fisiología , Zea mays/metabolismo , Procesos Autotróficos/fisiología , Ciclo del Carbono , China , Productos Agrícolas/metabolismo , Ecosistema , Procesos Heterotróficos/fisiología , Consumo de Oxígeno/fisiología , Fotosíntesis , Lluvia , Suelo/química , Temperatura
20.
Sci Total Environ ; 586: 1193-1203, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28238376

RESUMEN

Assessing the carbon budget of rainfed agricultural ecosystems is a vital component in the process of estimating the global carbon balance. We used eddy covariance techniques combined with soil respiration measurements to estimate the carbon budget of a rainfed spring maize field where straw returning was practiced, on the Loess Plateau, China, during 2012-2014. Carbon fluxes and their components (except heterotrophic respiration, Rh) exhibited single-peak seasonal patterns, and linear relationships were found between daily gross primary productivity (GPP) and net ecosystem exchange (NEE), and between daily GPP and ecosystem respiration (Re), with goodness of fit value of 0.96 and 0.85, respectively. The green leaf area index was the most important factor controlling seasonal variations in daily NEE, Re, and GPP during the growing season, followed by photosynthetically active radiation and air temperature (Ta). Daily Re was mainly controlled by air temperature during the non-growing season, when Re accounted for only ~17% of the annual Re due to winter temperatures. Growing season plant respiration (Rp) was the most important source of carbon emissions from the maize field, with aboveground plant respiration being the major part of Rp. Rh accounted for ~60% of total soil respiration. Only ~60% of the annual GPP was lost as Re, resulting in an average annual net CO2 uptake of 509gCm-2. Taking into account carbon exported (483gCm-2) and carbon imported (10gCm-2), the average annual net biome productivity was 37gCm-2, indicating that the spring maize field with straw returning on the Loess Plateau was a weak carbon sink.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA