Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 618(7967): 974-980, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258677

RESUMEN

Phosphorus is a limiting nutrient that is thought to control oceanic oxygen levels to a large extent1-3. A possible increase in marine phosphorus concentrations during the Ediacaran Period (about 635-539 million years ago) has been proposed as a driver for increasing oxygen levels4-6. However, little is known about the nature and evolution of phosphorus cycling during this time4. Here we use carbonate-associated phosphate (CAP) from six globally distributed sections to reconstruct oceanic phosphorus concentrations during a large negative carbon-isotope excursion-the Shuram excursion (SE)-which co-occurred with global oceanic oxygenation7-9. Our data suggest pulsed increases in oceanic phosphorus concentrations during the falling and rising limbs of the SE. Using a quantitative biogeochemical model, we propose that this observation could be explained by carbon dioxide and phosphorus release from marine organic-matter oxidation primarily by sulfate, with further phosphorus release from carbon-dioxide-driven weathering on land. Collectively, this may have resulted in elevated organic-pyrite burial and ocean oxygenation. Our CAP data also seem to suggest equivalent oceanic phosphorus concentrations under maximum and minimum extents of ocean anoxia across the SE. This observation may reflect decoupled phosphorus and ocean anoxia cycles, as opposed to their coupled nature in the modern ocean. Our findings point to external stimuli such as sulfate weathering rather than internal oceanic phosphorus-oxygen cycling alone as a possible control on oceanic oxygenation in the Ediacaran. In turn, this may help explain the prolonged rise of atmospheric oxygen levels.


Asunto(s)
Océanos y Mares , Fósforo , Agua de Mar , Atmósfera/química , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Sedimentos Geológicos/química , Historia Antigua , Hipoxia/metabolismo , Oxígeno/análisis , Oxígeno/historia , Oxígeno/metabolismo , Fósforo/análisis , Fósforo/historia , Fósforo/metabolismo , Agua de Mar/química , Sulfatos/metabolismo , Carbonatos/análisis , Carbonatos/metabolismo , Oxidación-Reducción
2.
Small ; : e2402423, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845523

RESUMEN

Electromagnetic protection in extreme environments requires materials with excellent thermal insulation capability and mechanical property to withstand severe temperature fluctuations and complex external stresses. Achieving strong electromagnetic wave absorption (EMA) while sustaining these exceptional properties remains a significant challenge. Herein, a facile approach is demonstrated to fabricate a biomimetic leaf-vein MXene/CNTs/PI (MCP) aerogel with parallel venations through bidirectional freeze-casting method. Due to its multi-arch lamellar structure and parallel venations within the aerogel layers, the ultralight MCP aerogel (16.9 mg·cm-3) achieves a minimum reflection loss (RLmin) of -75.8 dB and a maximum effective absorption bandwidth (EABmax) of 7.14 GHz with an absorber content of only 2.4 wt%, which also exhibits superelasticity and structural stability over a wide temperature range from -196 to 400 °C. Moreover, this unique structure facilitates rapid heat dissipation within the layers, while significantly impeding heat transfer between adjacent layers, achieving an ultralow thermal conductivity of 15.3 mW·m-1·K-1 for thermal superinsulation. The combination of excellent EMA performance, robust structural stability, and thermal superinsulation provides a potential design scheme under extreme conditions, especially in aerospace applications.

3.
ACS Nano ; 17(13): 12673-12683, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37378455

RESUMEN

The custom design of lightweight cellular materials is widely concerned due to effectively improved mechanical properties and functional applications. However, the strength attenuation and brittleness behavior hinder honeycomb structure design for the ceramic monolith. Herein, the ceramic matrix composite metamaterial (CCM) with a negative Poisson's ratio and high specific strength, exhibiting superelasticity, stability, and high compressive strength, is customized by combining centripetal freeze-casting and hierarchical structures. CCM maintains a negative Poisson's ratio response under compression with the lowest value reaching -0.16, and the relationship between CCM's specific modulus and density is E ∼ ρ1.3, which indicates the mechanical metamaterial characteristic of high specific strength. In addition to the extraordinary mechanical performance endowed by hierarchical structures, the CCM exhibits excellent thermal insulation and electromagnetic interference shielding properties, in which the thermal conductivity is 30.62 mW·m-1·K-1 and the electromagnetic interference (EMI) shielding efficiency (SE) reaches 40 dB at room temperature. The specific EMI shielding efficiency divided by thickness (SSE/t) of CCM can reach 9416 dB·cm2·g-1 at 700 °C due to its stability at elevated temperatures, which is 100 times higher than that of traditional ceramic matrix composites. Moreover, the designed hierarchical structure and metamaterial properties provide a potential scheme to implement cellular materials with collaborative optimization in structure and function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA