Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Small ; 19(19): e2206960, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36772909

RESUMEN

Integrating a biomimetic extracellular matrix to improve the microenvironment of 3D printing scaffolds is an emerging strategy for bone substitute design. Here, a "soft-hard" bone implant (BM-g-DPCL) consisting of a bioactive matrix chemically integrated on a polydopamine (PDA)-coated porous gradient scaffold by polyphenol groups is constructed. The PDA-coated "hard" scaffolds promoted Ca2+ chelation and mineral deposition; the "soft" bioactive matrix is beneficial to the migration, proliferation, and osteogenic differentiation of stem cells in vitro, accelerated endogenous stem cell recruitment, and initiated rapid angiogenesis in vivo. The results of the rabbit cranial defect model (Φ = 10 mm) confirmed that BM-g-DPCL promoted the integration between bone tissue and implant and induced the deposition of bone matrix. Proteomics confirmed that cytokine adhesion, biomineralization, rapid vascularization, and extracellular matrix formation are major factors that accelerate bone defect healing. This strategy of highly chemically bonded soft-hard components guided the construction of the bioactive regenerative scaffold.


Asunto(s)
Osteogénesis , Andamios del Tejido , Animales , Conejos , Porosidad , Biomimética , Remodelación Ósea
2.
Chemistry ; 29(26): e202300029, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36806228

RESUMEN

Deep red/near-infrared (NIR, >650 nm) emissive organic luminophores with aggregation-induced emission (AIE) behaviours have emerged as promising candidates for applications in optoelectronic devices and biological fields. However, the molecular design philosophy for AIE luminogens (AIEgens) with narrow band gaps are rarely explored. Herein, we rationally designed two red organic luminophores, FITPA and FIMPA, by considering the enlargement of transition dipole moment in the charge-transfer state and the transformation from aggregation-caused quenching (ACQ) to AIE. The transition dipole moments were effectively enhanced with a "V-shaped" molecular configuration. Meanwhile, the ACQ-to-AIE transformation from FITPA to FIMPA was induced by a methoxy-substitution strategy. The experimental and theoretical results demonstrated that the ACQ-to-AIE transformation originated from a crystallization-induced emission (CIE) effect because of additional weak interactions in the aggregate state introduced by methoxy groups. Owing to the enhanced transition dipole moment and AIE behaviour, FIMPA presented intense luminescence covering the red-to-NIR region, with a photoluminescence quantum yield (PLQY) of up to 38 % in solid state. The promising cell-imaging performance further verified the great potential of FIMPA in biological applications. These results provide a guideline for the development of red and NIR AIEgens through comprehensive consideration of both the effect of molecular structure and molecular interactions in aggregate states.

3.
Angew Chem Int Ed Engl ; 62(38): e202308853, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37503554

RESUMEN

Nanoparticles (NPs) transfer is usually induced by adding ligands to modify NP surfaces, but aggregation of NPs oftentimes hampers the transfer. Here, we show that aggregation during NP phase transfer does not necessarily result in transfer failure. Using a model system comprising gold NPs and amphiphilic polymers, we demonstrate an unusual mechanism by which NPs can undergo phase transfer from the aqueous phase to the organic phase via a single-aggregation-single pathway. Our discovery challenges the conventional idea that aggregation inhibits NP transfer and provides an unexpected pathway for transferring larger-sized NPs (>20 nm). The charged amphiphilic polymers effectively act as chaperons for the NP transfer and offer a unique way to manipulate the dispersion and distribution of NPs in two immiscible liquids. Moreover, by intentionally jamming the NP-polymer assembly at the liquid/liquid interface, the transfer process can be inhibited.

4.
Angew Chem Int Ed Engl ; 62(36): e202303789, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37198522

RESUMEN

Stabilizing liquids based on supramolecular assembly (non-covalent intermolecular interactions) has attracted significant interest, due to the increasing demand for soft, liquid-based devices where the shape of the liquid is far from the equilibrium spherical shape. The components comprising these interfacial assemblies must have sufficient binding energies to the interface to prevent their ejection from the interface when the assemblies are compressed. Here, we highlight recent advances in structuring liquids based on non-covalent intermolecular interactions. We describe some of the progress made that reveals structure-property relationships. In addition to treating advances, we discuss some of the limitations and provide a perspective on future directions to inspire further studies on structured liquids based on supramolecular assembly.

5.
Small ; 18(6): e2105017, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35142068

RESUMEN

To better exploit all-liquid 3D architectures, it is essential to understand dynamic processes that occur during printing one liquid in a second immiscible liquid. Here, the interfacial assembly and transition of 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (H6 TPPS) over time provides an opportunity to monitor the interfacial behavior of nanoparticle surfactants (NPSs) during all-liquid printing. The formation of J-aggregates of H4 TPPS2- at the interface and the interfacial conversion of the J-aggregates of H4 TPPS2- to H-aggregates of H2 TPPS4- is demonstrated by interfacial rheology and in situ atomic force microscopy. Equally important are the chromogenic changes that are characteristic of the state of aggregation, where J-aggregates are green in color and H-aggregates are red in color. In all-liquid 3D printed structures, the conversion in the aggregate state with time is reflected in a spatially varying change in the color, providing a simple, direct means of assessing the aggregation state of the molecules and the mechanical properties of the assemblies, linking a macroscopic observable (color) to mechanical properties.


Asunto(s)
Porfirinas , Porfirinas/química , Reología , Tensoactivos/química
6.
Angew Chem Int Ed Engl ; 60(16): 8694-8699, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33491263

RESUMEN

With the interfacial jamming of nanoparticles (NPs), a load-bearing network of NPs forms as the areal density of NPs increases, converting the assembly from a liquid-like into a solid-like assembly. Unlike vitrification, the lineal packing of the NPs in the network is denser, while the remaining NPs can remain in a liquid-like state. It is a challenge to determine the point at which the assemblies jam, since both jamming and vitrification lead to a solid-like behavior of the assemblies. Herein, we show a real-time fluorescence imaging method to probe the evolution of the interfacial dynamics of NP surfactants at the water/oil interface using aggregation-induced emission (AIE) as a reporter for the transition of the assemblies into the jammed state. The AIEgens show typical fluorescence behavior at densities at which they can move and rotate. However, when aggregation of these fluorophores occurs, the smaller intermolecular separation distance arrests rotation, and a significant enhancement in the fluorescence intensity occurs.

7.
Angew Chem Int Ed Engl ; 60(6): 2871-2876, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33111473

RESUMEN

Locking nonequilibrium shapes of liquids into targeted architectures by interfacial jamming of nanoparticles is an emerging area in material science. 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (H6 TPPS) shows three different aggregation states that present an absorption imaging platform to monitor the assembly and jamming of supramolecular polymer surfactants (SPSs) at the liquid/liquid interface. The interfacial interconversion of H6 TPPS, specifically H4 TPPS2- dissolved in water, from J- to an H-aggregation was induced by strong electrostatic interactions with amine-terminated polystyrene dissolved in toluene at the water/toluene interface. This resulted in color-tunable liquids due to interfacial jamming of the SPSs formed between H4 TPPS2- and amine-terminated polystyrene. However, the formed SPSs cannot lock in nonequilibrium shapes of liquids. In addition, a self-wrinkling behavior was observed when amphiphilic triblock copolymers of PS-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) were used to interact with H4 TPPS2- . Subsequently, the SPSs formed can lock in nonequilibrium shapes of liquids.

8.
Angew Chem Int Ed Engl ; 59(31): 12751-12755, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32329207

RESUMEN

Soft polymeric Janus nanoparticles (JNPs), made from polystyrene-b-poly(butadiene)-b-poly(methylmethacrylate), PS-PB-PMMA, triblock terpolymers, assemble into a monolayer at the water-oil interface to reduce interfacial tension. The extent to which the polymer chains can deform influences the packing density of the JNPs at the interface. The longer the polymer chains are relative to the core, the softer are the JNPs, resulting in a JNPs assembly with a lower initial lateral packing density. The interfacial activity of JNPs can be further tuned by complexation of the PMMA chains with lithium ions that are introduced into the water phase. This work provides a fundamental understanding of soft JNPs packing at the water-oil interface and provides a strategy to tailor the areal density of soft JNPs at liquid-liquid interface, enabling the design of smart responsive structured-liquid systems.

9.
Angew Chem Int Ed Engl ; 58(35): 12112-12116, 2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31353804

RESUMEN

The strong electrostatic interactions at the oil-water interface between a small molecule, 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin, H6 TPPS, dissolved in water, and an amine terminated hydrophobic polymer dissolved in oil are shown to produce a supramolecular polymer surfactant (SPS) of H6 TPPS at the interface with a binding energy that is sufficiently strong to allow an intermolecular aggregation of the supramolecular polymers. SPSs at the oil-water interface are confirmed by in situ real-space atomic force microcopy imaging. The assemblies of these aggregates can jam at the interface, opening a novel route to kinetically trap the liquids in non-equilibrium shapes. The elastic film, comprised of SPSs, wrinkles upon compression, providing a strategy to stabilize liquids in non-equilibrium shapes.

10.
Chemistry ; 24(31): 7845-7851, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29572988

RESUMEN

The diverse functionalities of large N-heteroacenes continue to be developed in terms of their strategic synthesis and application in the organic electronic field. Here, we report a novel large stable pyrene-containing N-heteroacene with ten linearly-annulated rings in one row. Remarkably, it exhibited excellent tri-state resistive memory property, which held great promise to achieve ultrahigh-density data storage. To the best of our knowledge, it is the first demonstration of organic multistate memory device based on large N-heteroacene (n≥10), which provides guidelines for designing more proof-of-concept larger N-heteroacene-based memory electronics.

11.
Angew Chem Int Ed Engl ; 56(1): 198-202, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27930841

RESUMEN

The molecular-level motions of a coronene-based supramolecular rotator are amplified into macroscopic changes of crystals by co-assembly of coronene and TCNB (1,2,4,5-tetracyanobenzene) into a charge-transfer complex. The as-prepared cocrystals show remarkable self-healing behavior and thermo-mechanical responses during thermally-induced reversible single-crystal-to-single-crystal (SCSC) phase transitions. Comprehensive analysis of the microscopic observations as well as differential scanning calorimetry (DSC) measurements and crystal habits reveal that a thermally-reduced-rate-dependent dynamic character exists in the phase transition. The crystallographic studies show that the global similarity of the packing patterns of both phases with local differences, such as molecular stacking sequence and orientations, should be the origin of the self-healing behavior of these crystals.

12.
J Org Chem ; 80(6): 3030-5, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25734230

RESUMEN

Realizing the control of emission colors of single molecules is very important in the development of full-color emitting materials. Herein, three novel phenazine derivatives (2,3,7,8-tetrakis(decyloxy)phenazine (2a), 2,3-didecyloxy-5,14-diaza-7,12-dioxo-9,10- dicyanopentacene (2b), and 2,3,13,14-tetradecyloxy-5,11,16,22-tetraaza-7,9,18,20-tetraoxo-8,19-dicyanoenneacene (2c)) have been successfully synthesized and fully characterized. Compound 2c can emit blue light in toluene solution (450 nm), green light in the powder/film state (502/562 nm), and red light in the 2c/TFA state (610 nm). The OLED with 2c emits a strong green light at a peak of 536 nm with a maximum luminance of the OLED of about 8600 cd m(-2), which indicates that 2c could be a promising fluorescent dye for OLED applications.

13.
Chem Commun (Camb) ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980120

RESUMEN

A BODIPY-containing conjugated microporous polymer (CMP, LBFD-1) was modified with calixarene to develop a hydrophilic CMP (LBFD-2) with broader absorption extending to the near-infrared-II region. LBFD-2 exhibited an H2O2 production rate of 2.14 mmol g-1 h-1 in the air without any sacrificial agents. The removal efficiency (η) of LBFD-2 towards methylene blue and rhodamine B reached >99.5% within 20 and 40 min in light. LBFD-2 can withstand diverse environmental changes, showing excellent reusability and potential for practical applications in real-water systems.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123990, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38340450

RESUMEN

Pyrophosphoric acid (PPi) is a crucial indicator for monitoring adenosine triphosphate hydrolysis processes, and abnormal PPi levels in the human body seriously threaten human health. Thus the efficient detection of the concentration of PPi in the aqueous solution is important and urgent. This paper described the successful synthesis of a tetraphenylethylene (TPE) derivative, named as TPE-4B, which contained four chelate pyridinium groups exhibiting aggregation-induced emission characteristics. TPE-4B was explicitly developed for the selective and sensitive fluorescence detection of PPi in aqueous solutions, showing a fluorescence "turn-on" response, and the detection limit was 65 nM. The four chelate pyridinium moieties of TPE-4B exhibited robust electrostatic interactions and binding capacity towards PPi, leading to the formation of aggregations, which was confirmed by zeta potential, dynamic light scattering, and scanning electron microscopy. Compared with free TPE-4B in the aqueous solution, the zeta potential of aggregations decreased from 20.7 to 4.2 mV, the average diameter increased from 155 to 403 nm, and the morphology transformed from porous nanostructures into a block-like format. Leveraging these properties, TPE-4B is a promising candidate for a "turn-on" fluorescence sensor designed to detect PPi in the aqueous solution.

15.
J Colloid Interface Sci ; 674: 145-157, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38925060

RESUMEN

This study introduces a self-driven system that effectively achieves synchronized sulfur recovery and hydrogen production using a Zn-air battery. The system ingeniously integrates the sulfur oxidation reaction (SOR) and the hydrogen evolution reaction (HER) into a single, efficient process. Central to this system is the trifunctional phosphorus-doped cobalt molybdate catalyst (P-CoMoO4/NF), which exhibits superior performance in both HER (ηj = 100 = 0.13 V) and SOR (ηj = 100 = 0.30 V) with remarkable stability (∼360 h), reaching 0.64 V at 100 mA cm-2 for simultaneous sulfur ion degradation and hydrogen production. Through density functional theory simulations and extensive characterizations, it has been shown that phosphorus doping in the cobalt molybdate catalyst facilitates electron redistribution, enhancing the catalyst's conductivity, generating more oxygen vacancies, and promoting improved mass and electron transfer. This modification also lowers the energy barrier for adsorbing reaction intermediates, thus increasing the hydrogen production rate and sulfur oxide conversion in this self-powered system. In summary, this research marks a substantial advancement in the development of trifunctional catalysts and proposes an eco-friendly, cost-effective strategy for integrated reaction systems, paving the way for sustainable energy solutions.

16.
Adv Healthc Mater ; 13(12): e2303600, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38303119

RESUMEN

Bone regenerative scaffolds with a bionic natural bone hierarchical porous structure provide a suitable microenvironment for cell migration and proliferation. Here, a bionic scaffold (DP-PLGA/HAp) with directional microchannels is prepared by combining 3D printing and directional freezing technology. The 3D printed framework provides structural support for new bone tissue growth, while the directional pore embedded in the scaffolds provides an express lane for cell migration and nutrition transport, facilitating cell growth and differentiation. The hierarchical porous scaffolds achieve rapid infiltration and adhesion of bone marrow mesenchymal stem cells (BMSCs) and improve the expression of osteogenesis-related genes. The rabbit cranial defect experiment presents significant new bone formation, demonstrating that DP-PLGA/HAp offers an effective means to guide cranial bone regeneration. The combination of 3D printing and directional freezing technology might be a promising strategy for developing bone regenerative biomaterials.


Asunto(s)
Regeneración Ósea , Células Madre Mesenquimatosas , Osteogénesis , Impresión Tridimensional , Andamios del Tejido , Regeneración Ósea/fisiología , Animales , Conejos , Andamios del Tejido/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Porosidad , Diferenciación Celular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ingeniería de Tejidos/métodos , Proliferación Celular , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Durapatita/química
17.
Adv Mater ; 36(19): e2310876, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321645

RESUMEN

Structural and physiological cues provide guidance for the directional migration and spatial organization of endogenous cells. Here, a microchannel scaffold with instructive niches is developed using a circumferential freeze-casting technique with an alkaline salting-out strategy. Thereinto, polydopamine-coated nano-hydroxyapatite is employed as a functional inorganic linker to participate in the entanglement and crystallization of chitosan molecules. This scaffold orchestrates the advantage of an oriented porous structure for rapid cell infiltration and satisfactory immunomodulatory capacity to promote stem cell recruitment, retention, and subsequent osteogenic differentiation. Transcriptomic analysis as well as its in vitro and in vivo verification demonstrates that essential colony-stimulating factor-1 (CSF-1) factor is induced by this scaffold, and effectively bound to the target colony-stimulating factor-1 receptor (CSF-1R) on the macrophage surface to activate the M2 phenotype, achieving substantial endogenous bone regeneration. This strategy provides a simple and efficient approach for engineering inducible bone regenerative biomaterials.


Asunto(s)
Regeneración Ósea , Durapatita , Factor Estimulante de Colonias de Macrófagos , Osteogénesis , Polímeros , Receptor de Factor Estimulante de Colonias de Macrófagos , Andamios del Tejido , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Animales , Ratones , Durapatita/química , Factor Estimulante de Colonias de Macrófagos/metabolismo , Factor Estimulante de Colonias de Macrófagos/farmacología , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/química , Polímeros/química , Diferenciación Celular , Quitosano/química , Indoles/química , Transducción de Señal , Ingeniería de Tejidos/métodos , Macrófagos/metabolismo , Macrófagos/citología , Células RAW 264.7
18.
J Am Chem Soc ; 135(38): 14086-9, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-24025023

RESUMEN

To achieve ultrahigh density memory devices with the capacity of 3(n) or larger, organic materials with multilevel stable states are highly desirable. Here, we reported a novel larger stable heteroacene, 2,3,13,14-tetradecyloxy-5,11,16,22-tetraaza-6,10,17,21-tetrachloro-7,9,18,20-tetraoxa-8,19-dicyanoenneacene (CDPzN), which has two different types of heteroatoms (O and N) and nine linearly fused rings. The sandwich-structure memory devices based on CDPzN exhibited excellent ternary memory behaviors with high ON2/ON1/OFF current ratios of 10(6.3)/10(4.3)/1 and good stability for these three states.

19.
Org Lett ; 25(31): 5730-5734, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37470402

RESUMEN

Three "π"-shaped D-A-type thiodiazoloquinoxaline derivatives with different electronic structures and rotations have been prepared. Their particular structures allow these molecules to possess a broad absorption range and sufficient intramolecular motions, dissipating energy through a thermal deactivation pathway. Among the three materials, TPA-TQN showed the best steam generation efficiency (84.52%) and water-electricity cogeneration efficiency (63.95%). This study suggests that D-A structures with different electronic configurations, free rotors, and hydrophilicities make great contributions to the overall solar energy conversion performances.

20.
J Mater Chem B ; 11(29): 6859-6867, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37401662

RESUMEN

Organic luminogens (OLs) that emit strong fluorescence in both solution and the aggregated state, referred to as dual-state emission luminogens (DSEgens), are highly desirable because of their capability to achieve multiple functions within onefold materials. The fluorescence of OLs, including DSEgens, with intramolecular charge transfer characteristics, often decreases in solution as the solvent polarity increases, namely the positive solvatokinetic effect, resulting in inferior environmental stability. In this work, fluorination to naphthalimide (NI)-cyanostilbene (CS) derivatives was adopted to construct novel DSEgens (NICSF-X, X = B, P, M, and T, respectively). Steady-state and transient spectroscopies were utilized to study their photophysical properties, evidencing their DSE properties with fluorescence quantum yields (φ) ∼0.2-0.4 in solution and ∼0.5-0.9 as solids. In particular, strong fluorescence emission in highly polar solvents i.e., φ up to ∼0.4-0.5 in ethanol, was sustained for NICSF-Xs, possibly assisted by hydrogen bonding (H-bonding) formation. Theoretical calculations and single-crystal structure analysis rationalized the intense photoluminescence (PL) emission of NICSF-Xs in the solid state. In addition, NICSF-Xs showed two-photon absorption (2PA) behaviors in dual states and were successfully applied for HepG2 cell imaging with one-photon and 2PA excitation, with lipid droplet targeting. Our study suggests that functionalization of molecules by fluorination to introduce H-bonding is a promising strategy to enhance the environmental stability of fluorescence in solution and realize strong PL emission in highly polar solvents, which could be favorable for bioimaging.


Asunto(s)
Halogenación , Naftalimidas , Espectrometría de Fluorescencia/métodos , Solventes/química , Etanol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA